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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS
TECHNICAL MEMORANDUM 1324

STEADY VIBRATIONS_OF WING OF CIRCULAR PLAN FORM*
By N. E. Kochin

The nonvortical motion of an ideal incompressible fluid has been
solved (reference 1) for the case of uniform.rectilinear motion of a
wing of eircular plan form. The method developed in reference 1 may
also be generalized to the case of the nonsteady motion of such wing.
The problem of the steady vibrations of a circular wing is solved
herein. The results will be frequently referred to herein. The prob-
lem of the steady vibrations of a circular wing was solved by another
method by Th. Schade (reference 2).

1. Fundamental-equations

The wing, the motion of which is under consideration, is assumed,
as in reference 1, to be thin and slightly curved; its projection on
the xy-plane hes the shape of a circle ABCD of radius a with cen-
ter at the origin of coordinates. The principal motion of the wing is
assumed to be a rectilinear translational motion with constant velocity
¢ parallel to the x-axis. The coordinate axes are assumed as displaced
with the same velocity. On the principal motion of the wing is super-
posed its additional harmonic vibration of frequency w, -where the pos-
sibility of deformation of the wing is not excluded. The equation of
the surface of the wing mey then be represented in the form:

z(x,5,t) = Lo(x,¥) + §1(x,¥) cos wt + Ea(x,y) sinwt . (1.1)

where the ratios Qk/a as well as the derivatives -ng/ax and ng/ay,
where k = 0,1,2, are assumed small magnitudes.

The fluid is assumed incompressible and the motion 1s assumed non-
vortical and occurring in the absence of external forces. The velocity

*"0Ob ustanovivshikhsya kolebaniyskh kryla krugovoi formy v plane!
Prikladnaya Matematika i Mekhanika, Vol. VI, 1942, pp. 287-316.
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potential will be denoted by ¢(x,y,z,t) and steady vibrations of the
fluid will be assumed; that 1s, the velocity potentlal is represented
in the form:

(p(nyJZ’t) = (PO_('X:.Y:Z) + ‘Pl(x:f)’:z) cos wt + ‘PZ(X:Y)Z) sin wt

It is evident - that the functions @O, ® 12 and wz satisfy the
equations of Laplace
2 2
> + 2 + ) =0 : (k=0;l:2)
ox oy oz

The velocity of the particles of the fluid near the }eading edge
of the wing DAB 1is assumed to approach infinity as 5L , where §

is the distance of the particle from the leading edge, but the velocity
of the fluid particles near the trailing edge of the wing BCD 1is
assumed as finite. From this edge s surface of discontinuity passes

off on which the function ¢ undergoes a discontinuity. As in refer-
ence 1, the problem will be linearized. Since the values of the functions
U and their derivatives are assumed to be small quantities of the first

order, their squares and products are rejected. The functions
wk(x,y,z) are further assumed to have discontinuities on the infinite

half-strip ® situated in the xy-plane in the direction of the nega-
tive x~axis from the rear semicircumference. BCD of the circle S +to
infinity. The boundary conditions on the surface of the wing are
replaced by the conditions on the circle S located in the xy-plane.
Everywhere outside the half-strip ¥ and the circle S the functions
¢, (x,¥,2) are thus regular functions.

The boundary conditions which these functions satisfy are now set
up. On the surface of discontinuity &, the kinematic condition
expressing the continuity of the normal component of the velocity must
first of all be satisfied:

@, . -@.

from which is obtained the conditions

d
(5:;% z=+0 ) (g;l_{) z==0 * (l' 2)

{2}
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The dynamical conditions expressing the continuity of the pressure

in passing through the surface of discontinuity & are now stated.

 If a stationary system of coordinates xlylil is employed, con-

nected with the coordinates xyz of the moving system of coordinates
by the relations :

X=Xl-Ctl y=yl Z=Zl t=tl

then the pressure may be determined by the following formula:

2 N2 2
_ 0¢ _p {(29 o0 o0 -
p=~-p El - E (aXl> + (ay]) + (‘gz'z) + F('tl) (1.3)
Since
d¢ _ dv 3% d¢ _3¢ d¢ _d¢ do _ do¢ (1.4)

3t T3t T “3dx ;T3 Jy; dy Jz; Oz

the following equation will apply in the movable xyz system:

- Q0 + pc o0 _p (29 : + ém : + o¢ ; + F(t) (1.5)
P="P3% TP ™2 \3x dy dz :
When small quantities of the second order are rejected and the
magnitude F(t) is not dependent on the coordinates,

or, on account of equation (1.2),
( ) a(PO a‘pl ) : BCPZ 1) .
D x,y,z,t) = pc % + \pc S pup, | cOs wt + |pc ” + puxp 51n.wt.
' : (1.8)
For briefness,'the following notation is introduced:
wfc = k (1.7)

‘The condition of continuity of the pressure on & then leads to the
. .three.equations: . ' '
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”(aml ) kﬂ>) - (a@l - o ) _ on
ox ", o \ox 2/ 4=-0

X - (1.8)
Z
(e vm) (52 wm)
+ ko = +
dx L z=+0 =3 1 z==0

The condition on the circle S is now written. ZEquation (1.1) in
the stationary system of coordinates has the form:

Zl = go(xl-ctl,yl) + gl(xl—C'tl,yl) COS. (Dtl + Cz(xl-Ctl,yl) sin (Dtl

Hence, for the normal component of the velocity of the fluid parti-
cles adjacent to the surface of the wing,

dz 3t 3¢ 14
Lo s e e <t cos at - wfy sin wt - ¢ Z sin wt + wf, cos wt
dt, ox ox 1 Ox 2 €08 O

The notations
3o ot ot
2
- eup = Z2o(xy) - e\gg - Kbp) = Zy(xy) - el + Kby = Za(x,y)
yield the boundary condition
=) = 2o(%,y) + Z1(x,y) cos wt + Zo(x,y) sin wt
Oz z=0

wﬁich must be satisfied on both the upper and the lower sides of the
cirecle S and which breaks down into the three conditions:

(aw%
Oz / 2=0 - Zk(XJY) on S (k = 0,1,2) (1.9)

The presence of conditions (1.2) and (1.9) permits consideration of
the functions ¢, (x,y,z) as odd functions of Z:

¢k(ny}_Z) = - ¢k(XJY;Z) (l.lO)
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If it is assumed, in particular, that =z = O,
¢ (x,¥,0) = 0 - (1.11)

in the entire xy-plane with the exception of the circle S and the
half strip ¥ on which @, undergoes a discontinuity.

The conditions (1.8), because of equation (1.10), assume the form:

o  dwp | dep
BX___=O Sx__k¢2=o -6—;+k(pl=0 on

)

(1.12)

Finally, the absence of a disturbance of the fluid far ahead of the
wing leads to the evident conditions at infinity:

a¢k oP, P
lim 5=~ = lim e lim 5~ =0. (1.13)

X+ X >4 X>+w

The problem of determining the function wo(x,y,z) satisfying all

obtained conditions for this function was considered in reference 1.
The following equality is set up: .
2 (x,5,2) = @,(x,y,2) + ip,(x,y,2) (1.14)
so that .
o (x,y,2,t) = @p(x,y,2) + Re{%(x,y,z)e'iwﬁ} (1.15)
Also,

gl(X;Y) + iCZ(X;ZY) = Q(XJY)
Z(x,y) + iZo(x,y) = 2(x,y) = - c<§§ + iké) - (1.16)

The shape of the wing will be determined by the equation

Z(XJth) = CO(X)Y) + Re{g(x)y)e-iwt} (1'17)

The functions &(x,y,z) will then be a harmonic function, regular
in the entire half-space 2z>0 and satisfying the conditions:
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6
(gg) = 2(x,y) on S _ (1.18)
% + ikd =0 on E (1.19)

+

following from equations (1.9) and (1.12). In the entire remaining
part of the plane xy the following condition must be satisfied:

2(x,y,0) =0 . (1.20)
Moreover, the following conditions must be satisfied at infinity:

. & . .
1im %{: lim g—f:= lim %’g:o (1.21)

X > X+ X ->+o

which are the boundary conditions of the first derivatives of the func-
tion &(x,y,z) near the rear semicircumference BCD of the circle S
and the condition that near the forward semicircumfe7ence DAB these
derivatives may become infinite to the order of &~ .

2. Fundamental formulas

In reference 1 an expression was. constructed, which depended on an
arbitrary function f£5(x,y), which determined a harmonic function

wo(x,y,z) satisfying all the conditions imposed in the preceding section

‘PO(X:.VJZ) =2_];'.( J;j fO(E;T]) K(X)y}ZJE.rJT]) +

2.1
xS (2.1)
2
1 G(x,y,z,y)’vgz - 2 - 12 cos v dy dx ag an
7Cal 2 1 (2 + 12 + a2 - 2aF cos v - 2an sin ¥)
w| =
2 .

The functions K(x,y,z,&,m) and G(x,y,z,y) for z>0 are given by

5 Na? - E2 - 12 Na2 - B - y2 _ ;2 4 g
K(x,y,2,E,m) = ~parc tan 'V?ar

AJQZ - %% - yz - 22 + R
a 2 _ 2ax cos Y - 2ay sin vy

(2.2)

G(x,y,2,7) = —3

x4 + y% + 2% 4+ a
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which are harmonic functions of x,y,z where
=Nx- 82+ (y - 12+ 22

R = hJ(az - x2 - y2 - 28)2 4 45852

(2.3)

In order to satisfy boundary condition (1.9)

op

0
it is neéessary to take
fo(XJY) = - ZO(X:Y) + gO(Y)_ (2'5)

where go(y) is determined from a Fredholm integral equation of the

sécond kind.

The solution of the more general problem of steady vibrations may -
be presented in a similar form.

Thus, fl(x,y) and fz(x,y) denote two arbitrary real functions,

continuous, together with their partial derivatives of the first and
second order, in the entire circle S;

fl(x,y) + ifg(x:Y) = f(X)Y) (2'6)

It will now be shown that the function

é(ny)Z) = %; bjﬂ f(E,n) K(X)Y:ZJEJW) +

o-ikx G(x,v,2 ,T) elkx '\/ 2 _ 2 . 'q cos v dy dx ar an
_ “21r— 1 (&2 + n + a2 - 28F cos v - 2ay sin 1)
E

(2.7)

satisfies all the conditions of the preceding section except
condition (1.18).
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The function G(x%,¥,2,¥), as shown by equation (2.2), is harmonic;
hence the function :

X

L(x,y,z) = emikx elkx G(X:Y:z) dx
+oe

will be a harmonic function. In fact,

X
2 2 2 . 2 2., -
Al = 9 g + 9 g + o g = gg - ikG + et elkx é—% +-§—9 - k2G| ax
ox oy oz x oo oy dz
x
. 2 '
= %’f - 1kG - e~1kX elkX <__5 g 4 sz) dx
x + oo axz

When this expression is integrated by parts, it is easily shown
that AL = O, since both G and 0G/dx approach zero for x--+ e,

It then follows that the function ¢ (x,y,z) likewise satisfies the
Laplace equation

A® =0 (2.8)

where from the form of equation (2.7) it is seen that & (x,y,z) is
regular everywhere outside the circle S and half strip =. In
exactly the same way it is shown that the conditions at infinity (1.21)
and condition (1.20) are satisfied.

Furthermore,
gi’ + ikd = % j;f f(g,q){gl{ +1KK +
5
2

4
1 G(x%,5,2,7) A/az - &2 - 712 cos y dy
neaf 2 1 (E2 + 12 + a2 - 2af cos y - 2a7y sin y)
= 5 :
-2

dg dn (2.9)
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It is clear that if x% + y2>a? then

: %§-+-ik¢’= 0O for z=0 (2.10)

so that condition (1.19) is likewise satisfied.

It thus remains to check the finiteness of the derivatives of the
function  ®(x,y,z) at the points of the semicircumference BCD of the
circle S and to establish the behavior of these derivatives near the
forward semicircumference DAB. But near the forward semicircumference,
the inside integral in formula (2.7) evidently remains bounded, as do
its partial derivatives; since the first derivatives of the integral

f\f\ £(&,n) K(x,y,2,E,1) 4& dn «
3 .

as established in reference 1, and as will again be proven, have near
the contour of the circle S the order & 1/2 (vhere & is the dis-
tance of a point to the contour ABCD of the circle S), it is clear
that the first derivatives of the function &(x,y,z) also have the
order 8-1/2 near the forward semicircumference DAB of the circle S.

For determining the behavior of the function &(x,y,z) near the
rear semicircumference BCD, the right side of equation {2.9) is trans-
formed. Denoting it by M(x,y,z) and making use of formula (2.11) of
reference 1 and the formula of integration by parts (2.14) of

reference 1,
M(x,y,2) =.2—J;t ff £(£,1)< 1kK -
. ' s

3, .
2 - 4, 2 .2 2 3
1 G(x,y,2,7) ‘Va®-&"-1" cos v dr 1 £
dg dn - K dE dn
n?AIE : (€2+n2+a2_2a£ cos y-2an sin 1) on \[\ S

T ' S

]
=

(2.11)
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It is evident that this function remains finite near the rear
semicircumference BCD. But when the following equation is integrated,

%;_f + ik® = M(x,y,z) ' (2.12)

there is obtained

& (x,y,z) = e 1kx el¥X M(x,v,2) dx + $(0,y,z) e-1KX (2.13)
0

whence it is clear that both the function & and its derivative with
respect to x remain finite near the rear semicircumference BCD. The
derivatives of M with respect to y and 2z will be of the

order 6'17 near BCD, as follows from a consideration analogous to
that which was adduced previously for determining the behavior of the
function+d (x,y,z) near the forward edge of the wing DAB. Since

X
&P -ikx ikx OM 08(0,y,z ;
= e e dx + 220 e-ikx
dy Sy ¥y
o .

it is clear that the derivative J3&/dy, and similarly o%/dz, remain
finite near the rear edge of the wing BCD.

The function (2.7) thus satisfies all the imposed conditons. The
only condition not utilized was condition (1.18)

(§§>z=o = Z(x,y) on 8 (2.14)

When the following formulas are employed:
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z *+0

1im ff %E.f(g,n)- d& d'q = - an(lx,y)
S .

o for x2 + y2<aZ2

.9 [2 2 2 2.
lim 2 a® - x% - y* -z 4+ R = '
7 3 +0 Zv a’\/Z_ for xZ + y2>a_2
‘\/;2 + y& - af

it is found without difficulty that on S

(%j)z=o - - £(x,y) + gly) e-ikx (2.15)

where

3
z

“az-yz n
_ s el (32 4 32 _ 82)-1/2 (a2 . g2 - 42)1/2 cos v £(k,n) dar dx dE ay
&) = 20 V[JAJA f (x2 + ¥ + 2 - 2ax cos v - 2ay sin T)(£2 + 72 + &% - 2aE cos v - 2Zaq siny) (2.26)
Fo- ; 7
2
The following equation ié thus obtained:
-£(x,y) + gly) e™ X = z(x,y) (2.17)
whence
£(x,y) = - 2(x,y) + gly) e"1kx (2.18)
Substitution of this value of the function f£(x,y) in equa-
tion (2.16) yields, for the determination of the function g(y), en
integral equation of Fredholm '
a .
g(y) = ¥(y) +| E(y,n) g(n) dn (2.19)

where

/\sz +y2 - a2(E2 + 12 + &% - 28 cos ¥ - 2aq sin 1)

ret-y; . . .
a \J'If elkx Afg2 _ g2 _ 12 g(x,y,2,7) cos v Z(E,n) dy dx dE dy (2.20)
p .
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with G(x,¥,2,7) according to equations (2.2) and

H(y,n) =

h/az_yz A/az_yz % x

) . 1/2.
B x ok -2 432 o) Y2 (2 2 )P oy ax e (2.21)
210 (x2 + y2 + a® - 2ax cos T - 2ay ijn T)(Ez + 712 + 8% - 2aE cos T - 2an sin )
Vaz_yz 1 . '

3. Computation of forces

The pressure p may be determined from formula (1.6), which with
the notation (1.14) may be written in the following form:

D = pc g—i—o + Re[(% + ik@) e‘iw{]} (3.1)

For the computation of the forces acting on the wing, it is neces-
sary to know the pressure on the circle S.

Because of equation (l.lO), the pressures above and below the wing
differ only in sign: ’

P. = - P, (3.2)
For clarity, the signs of the functions on the wing will henceforth
be assumed to be the limiting values in approaching the wing from

above, that is, for =z-+ O.

For the 1ift force P the following expression is obtained

P = \[;[\(p- - pp) dx dy = - 2 \[:f“p+ dx dy =
S
d .
- 2pc ff $'+ Re [(%i + i]@) e~ 10t} b q4x ay (3.3)

S
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But by formilas (2.9) and (2.11), the following equation applies
on the upper side of the circle' S:

D "". e T éiﬁlsﬁl—l + i kx¥(x,y,0) = e ‘{114 K(x,y,0,E,1) d& dn +
L £(g,m) | 1 k K(x,5,0,€,1) -
znf Pl >¥50,58,1
.8 ’ :

V;"X-yzl\/a- -q cos 1 dr 'ild;zdn

2 . 2ax cos v - 2ay sin 1) (&% + 72 + a€ - 2a& cos 1 - Za'q sin 7)

(3.4)

ol
El

7@ (x® + y2 + &
1
-1
This expression is integrated over the entire area of the cir-

cle 8. The order of integration is interchanged and the two integrals
must be computed first of all by formula (4.13) of reference 1

al - x8 —.yz .
_ dx dy = 2na (3.5)
A X2 + y2 + a2 - 2ax cos ¥ - 2ay sin t

It will be proven further that
ff K(X,.‘Y’O;«E,ﬂ) =4 “az - 52 - le (3-6)
5

For this proof, the following function is considered:

F(X;Y-J_ZA) = ff K(x,y,2,&,n) 4& dn- | (3.7)
. ] ' .

Because of the definition of the function K, the function
F(x,y,2z) is-a harmonic function over the entire space outside the cir-
cle 8. By formula (2.35) of reference 1, the following condition is

satisfied on the surface of this circle:

e . _
' . oF = - 2% on S (3.8)

oz
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and therefore the function (3.7) is the potential of the nonvortical
motion of a fluid corresponding to the translational motion of a cir-
cular disk with velocity +2n along the negative z-axis normal to the
‘plane of the disk. This motion, however, belongs to those that have
been studied in classical hydrodynamics, from which can be taken the
corresponding expression of the function. ' '

F(X)Y:Z) =ff K(X:Y:Z,E:Tl) dZ dn
S

2AfZAR + a2 - x2 - y2 - 2241 -

R + %2 + y2 + 72 - g% R + x° + yz + 78 - g2
arc ctn
2 2
. 2a 2a

(3.9)

Passing to the 1imit z-+ O yields the formula

ff K(X,Y,O,E,n) dg dn = 4 ,\/aZ - %% - y2 on S
S

which is equivalent to equation (3.6), since K(x,y,0,&,m) is a symmet-
rical function with respect to the points M(x,y) and N(Z,n).

The-following formula is thus obtained:

ff[a@gxéxx!o) 1 k@(x,y,O)] o dy - ;zrff, [Z 222 {%2 s iki‘}dE an -
s S

a ,/z 2 2 cos Y dr

£ a® - E¢ - 1% £(&,7) d& a 3.10

712” ? §2+n2+a2—2&£cosr-2aqsinr & ( )
S e

T

ol
=

ol
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If this expression and similar expressions are substituted for the
function ¢q, obtained from equation (3.10) for k = 0, the final

expression of the 1lift force acting on the wing is obtained:

_ 4ocf ,\/—ﬁ—{g_{g+3e 'M)t(g-g+iki‘):l -

3 a
2

cos v dy }dg an (3.11)

€2 + 12 + a2 - 2a€ cos v - 2an sin y
Ly ' : ' '
2

By integration by parts and with the aid of the following formula.

2 n
cos v dy B 2nE
E2 + n2 + a2 - 2a¥ cos v - 2an siny a(a2 - E2 - 72)
0
' (3.12) -
equation (3.11) may be rewritten in the form:
P=- 4pcffA/a2 - E_’,z - nz{Re(ikfe'iwt) +
T
3
E T
- ~dy
fo + Re(fe 1wt3 cos Y dE @
[ 0 ( E2 + 12 + a2 - 238 cos v - 2an sin y £ dn
l .
_ 1, ‘
2 (3.13)

In a similar manner, the formulas for the moments of the forces
about the x- and y-axes are obtained.

For the moment of the pressure forces about the x-axis

=k/1jhy(p- - p4) dx @y ="~ ijp yp+ dx dy (3.14)
s~ | s~ '
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“there is obtained : o ’ :
- R0 a@ )
= - 2pc + Re +1k @) em10t] Lax g 3.15
MX p fJY{:B; = Y ( )
5]
The order of integration is interchanged by use of equation (3.4).

It is here necessary to compute two integrals. By formula (4.44) of
reference 1,

kjck/\ y/Vaz - X2 - y2 dx dy

2 .
na® sin 3.16
x2 + y2 + a2 - 2ax cos ¥ -~ 2ay sin v v )

[SINS

It will now be shown that

JQ[YMLLOéﬂdX@

For this derivation, the following.function is considered:

Fl(X;YJZ) =ffﬂ K(X;y,z,E;ﬂ) dg dn
S

By formula (2.35) of reference 1, the following equation applies
on the circle S:

n - g2 - o2 (3.17)

ulm

oF1
Sz =AW

and therefore Fl(x,y,z) is the potential of the motion of a fluid cor-

responding to the rotation of a disk about the x-axis with angular
velocity -2m, a case studied in classical hydrodynamics:

(3.18)
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Fl(x)y)Z) _=ffn K(%bﬁ:?i&:ﬂ) dg dn
i S
_ ) .
= 2afE yAR + 82 - %2 - y2 - 241 - 5 2; 3% -
_ 3(R + X% + y° + z% + a%)
2 2 2 - 2 : 2 2 2 2
A_/R+x +;[_2+z 8 re ctn,\/R+x +yz+z - a (3.19)
. zcaf 2a

Passing to the limit =z-+ O yields the formula

ffn K(%,7,0,&,1) a8 an = < yNa? - 5% - 32 on s
5

equivalent to equation (3.17).

As a result, the following formula is obtained

[/;[§+ikq>]udy ffﬂ* &ka}dm-

1
"

/\/ - - 02 f(& sin v cos y dr ax an (3.20)
3ﬂsz n mi/ E2 + 12 + a2 - 28E cos v - 2a sin t
1

2

Hence, for the moment of the pressure forces abou'b the x-axis,

the following expression is obta.ined'

Mx-’apcffVa - g2 - g2 [g—f—+Re e‘iwt(gga;ikf)]-

‘a _ - sin y cos v dy .
= | £5 + Re(e~iwt ¢ / dg d
21([ 0] ( ] 52 + nz + 82 - 28k cos 1 - 28.1] sin y £ an

(3.21)
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or, on account of the Tormula

2 .
sin y cos v dr 218N

EZ ym2 4+ a2 - 2af cos v - 2an sin v B a(a? - EZ - le)

(3.22)

the equivalent expression

: . 2 .
Mg = - g—isf\/"\/az - E2 _ 9% {1 Re(ikfe~io0t) +%r [fo + Re(fe"l‘btﬂ x
S . .

ot
a

sin v cos v dr dE dy (3.23)

EZ + n% + a? - 2ak cos v - 2an siny

Z x
2

In the same way for the moment of the pressure forces about the

y-axXis
My=-jfx(p_—p+) dxdy:-zf xp, dx dy (3.24)
. g S

there ig obtained

P
My = chffx{&g + R_e[(g% +1ik 4») e~iwt | bax ay (3.25)
S

It is here necessary to employ the formulas

nal cos 7

IS

X2 + y2 + a2 - 2ax cos Y - 2ay sin y

| ff xNe - x -y dx dy =
s

(3.26)
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' 8 A 2
x K(x,¥,0,E,1) dx dy =3 5\/a2 - 2 - (3.27)

As before, there is obtained

BDCffV 2. _nz gf—-;-Re e'iwt<g£+lkf>]-

2 x
2

2 . 2
a i cos a
Er fo + Reé t f) 5 > > Y ar - dE dn
g+ n° +a® - Z2ag cos y - zan sin y

(3.28)

1
oo
A

Integration by parts and use of the formula yields

2 % 2
cos? v dr _ 2ng .
. EZ + 1% + a2 - 228 cos y - 2an siny aZ(af - E2 - n2) &%

(3.29)

also

_ 8pec 2 _y2 _ .2/ 3 _ -iwt (3., _

M, = =2 Va g2 _ q > £ ReI:e <2f 1k€f>]+
S x

2

2 ' .
a —imt cos® v dy . :
= |fn + Re(e™1® f)] - 4k dng
2 [() E2 4 nz + a2 - 2aE cos v - 2an sin yv

w

2

ol

(3.30)

The value can now be computed for the frontal resistance W, which
is composed of two parts. First, the normal force (p_ - p,) dx dy

- acting on an' element of the’ wing dx 4y will have a component in the
direction of the x-axis:
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(p. - p+) [Sf;_o + Re(%}% e'lwt>] dx dy

(p_ - py) gﬁ ax dy

if

z(%,¥,t) QO(X,y) + Re[?(x,y) e-ﬂbg

is the equation of the surface of the wing. Integration of this
expression gives the first part of the frontal resistance in the form:

o)
Wy =ff(P_ - P+) [% + Re<§}% e'idﬂil dx dy

S

= - 2pc gﬁg + Re [(%— +1k @ e ﬂb -5—— + Re e'iw€> dx dy
d (3.31)

In fact, the frontal resistance W will be less than Wl’ since

a suction force W, appears because of the presence of the sharp

leading edge of the wing DAB; therefore,
W=W - W, (3.32)

The suction force Ws 1is connected with the presence of a strong
rarefaction near the edge of the wing. This rarefaction is taken into
account principally by the square terms of the fundamental formulas (1.3)
or (1.5) for the pressure and it is therefore unnecessary to employ
these formulas here.

The suction force W, 1s computed from the law of conservation of

momentum applied to a thin filament-like close region < containing
the forward semicircumference DAB of the circle B5; region T is
bounded outside by surface o¢ and inside by part ©S' of the upper side
of circle S adjacent to the semicircumference DAB and the part S'!
of the lower side of the circle S. Figure 1 shows a section of these
surfaces obtained by a passing plane through the z-axis.

The equation expressing the momentum law is projected on the
X-axis:

3 _ A
- Wy -ffp cos(n,x) ds =k/:/:_/; ?::}—( dv + pj Vv, A4S+ pf /"n‘x s (3.33)
g T o ’

Stigter
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The left-hand side is the sum of the projections on the x-axis of
all the forces acting on the volume of fluid considered, and on the
right-hand side is the total derivative with respect to time of the
component on the x-axis of the momentum of this volume; this derivative
consists of two parts, a volume integral connected with the local change
of velocity and a surface integral expressing the transfer of the momen-
tum of the particles of the fluid through the bounding surfaces of the
volume ~<.

Equation (3.33) may be written both for the stationary system of
coordinates OpX7y27 and for the moving system of coordinates Oxyz.

For the statlonary system of coordlnates, express1on (1.3) is used
for the quantity 'p; moreover,

vy = %{’ vy = g%’ ' : (3.34)

By the theorem of Gauss

2
ﬂfor“=ffﬂ&%jdf
T
P g—,:pl cos(n,x) ds +/ /p ?T;Pl cos(n,x) ds (3.35)

9 Sr+gty

From equation (1.3) and the equation just derived, the following
expression is obtained from equation (3.33) after a number of simple
- transformations:

iR ey
o
/ fg——- cos(n,x) das - pf L/‘y ds | (3.36)

g1 +Sll gtigts

Since Jp/dt] and 3d¢/dx near the leading edge of the wing are of

the order &1/2 ang d3¢/dn and cos(n,x) are finite on the surface of
the wing, ‘the last integrals drop out when region T is extended to the
line DAB. The following limiting equation is therefore applicable:
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llm B(D 6(5 . (g—:) cos(n, X) ds - p g—w?
g (3.37)

For comﬁutation of the suction force Wp, the expressions must be

found for the components of the velocity near the leading edge of the
wing DAB. The velocity of the fluid particles near the leading edge
of the wing are shown to be of the order of 6'1? if & is the dis-
tance of the particle to the contour C of the circle S. From equa-
tions (1.15) and (2.7) it is evident that

¢(X:Y;Z t) = E:ﬂ) + Re[%(g n)e_uéﬂ K(X:y) JE:“) dg dn +

X(x)y)z,t) (3'58)

where the function ¥X(X,y,z,t) and its derivatives remain finite near
the leading edge.

The behavior of the function is now examined more closely

U(X:Y:Z) = f(an) K(X;Y:Z;E,ﬂ) d& dn (3°59)
S

near the contour C of the circle 8. Therefore,

f(a,n dg dn

Since on C +the function K becomes zero, the following equation

results
%g f(g,n) 4& an = —Lj/t//; g% dg dn
S f

showing the finiteness of this integral. Therefore
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. %&f/@% + %f;) £(z,m) ax an + 0(1)
s | '

where O0(1) denotes a magnitude which remains finite when &
approaches O. But -

3K N K _ _ - 24/2 a Afa2 - x2 - y2 - 22 + R 9
ox = o JT{?azrz +,(a2 -2 0 2)(a® - %2 - y2 - 42 4 R?)
x B2 - g2 - 42 . £
R
- Afa? - g2 - p?
hence
el 2z 5.2 2.2 £(&,1)
= - \\ a2-x%-y%-224R
x P St A 28272 1 (aB-£2-12) (82-%2-y2-22+R)
s

A2 g2 2
[% 2 ﬁg nll I £ :]dE an + o(1) (3.40)
s /32_52_-{]2 )

The coordinates 6, 6, and a are introduced
x=(a+8cosa)cos 8 y=(a+dcosa)singd 2z =25 sina

(3.41)
Then

a% - x% - y2 _ 22 = - 208 cos o - 82

R = 8’\/4:_9.2 + 4ad cos a + B2 = 2ad + .
T - 22 - 2 - 22 2 R 2 einl ALE 4 .
4/a - X% -y° -2+ R 2 sin 5 ad + . .

NE

(3.42)

/\/R-a2+x2+y2+zz 2 cos

] Fel
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The point with coordinates (x,y,z) is brought into correspondence
with the point of the clrcumference C with the coordinates

Xog = a cos 8 yol='a sin 6 zg =0
and -
= (% - £)2 + (yo - 7)2 = £2 + 12 + a2 - 2ak cos 6 - 2an sin O
| (3.43)
Near the contour C, the principal part of the integral
5, (%,7,2) =L/C/P Za?'dla - E - n T(E,n) d& dy
2a2r2 + (a2 - 2 - n2)(aZ ~ x2 - y2 - 22 + R)
g | (3.44)
is

N(6e)

fff(a,n) Afa - £2 - 72 %‘
S

£(g,n) Va2 - £2 - 72 d& dy (3.45)
J £2 + 12 + aZ - 2a& cos 6 - 2an sin 6 )

For this purpose, the following difference is estimated:

= J]_(X:Y)z) - N(e)

The circle S 1is divided into two parts: the circle S

of radius a - €&; and the ring S, lying between the circumferences of
radii a - ¢ and a.

f £(g,n) Va2 - &2 - 2a” - L baz an
’ 2a2r2 + (a2 - EZ - n2)(a® - x% - y2 - 22 + R) roz

- 2g2p2 _ - g2 - _ w2 _ 2
fff(z,n) 4/a? 22& Za (e EzE nE)(ef - o -y - 2P ), an

roz {Zazrz + (al 72) (a2 - x2 - y2 - 22 4 R)}
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=25 cos a(& cos 6 + n sin 6 - a) -

282(ro? - r8) - (a? - €2 - nZ)(a® - x& - ¥ -

= - 2a5r02 cos a - (az + EZ 4 ﬂz) 82 - (a? -
Since
ro? € 422 R L 2a% + B7

therefore

|2a2(r02 - r2) - (af - E2 - n2)(a? - x2 - yB - 2% 4 R)|$.2a5r02 + 2a%8% +

(a? - &2 - %) R

Hence if |f(g,n)] <M in the circle S then

’Vaz - 52'— nz dg dy

52
78 + R)

IA]_IS 2adM |

282r2 + (a2 - £2 - 32)(a2 - x2 - y2 -~ 22 + R)

25282M ’\/;'2 - £2 - 12 4& 4q
A rOZE'ZaZrZ + (a2 - g2 - 2)(a2 -~ x2 - y2 - 22 ¢ R)J
1 .

RM
roz Eéazr + (a - 52 - nz)(a - x2 - y%

But by equation (2.24) of reference 1

W/a2 - E2 - 12 dE dy

" 2a2r2 4 (a2 n2) (a2 - x2 -~ y2 - z2

Since

Zazrz

2

= 2a2r0 + 2adrp® cos a + (a + g + qz) 82 + (32

<
+ R)

+ (% - gf - n®)(af - xF - yE - 2% 4+ R)

- E2 .

z + RZ]

A

1%) R

ro2 - % = E2 + 12 + a? - 2ak cos 6 - 2an sin 6 - (x-£)% - (y-1)2 - z

+

2

25
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hence for &< a/ 2

20202 4 (a - £2 - n8)(a? - %2 - yB - 42 + R)Z afrg? . (3.46)

Va2-£2-72 Q£ a N
1 1 < . 28202 gr g
fh/rozczazrz“‘(az'gz—nz)(az-xz-yZ ZZ+RI| =~ g 1'04 a g 1] E T]
-

The last 1ntegral evidently does not depend on 9 hence it may be
assumed that 6 = 0 .and therefore

2n  a-r

‘/\J’r—i’\/aZ-QZ-qu‘edqi/’k/‘ 2-0 o dp 494 _f n(a +olpd
53 ° (O]

(p2 - 2ap cos § + a2)2 2)5

p=a-¢&

472 _ 2n _ 4nal _ an 21r 47/\fa
- 3
LC’»\/ (a2 - p2)3 ,\/32 - p2 0=0 S/V(Zae - €2)3 '\/Zas - €2 & 3’\/53

Similarly

/\/ - 2 - 42)3 gz ay <1 /\/“23
ffroztza +(a 52_.{]2)(& _xz_y 22 +R)] J‘j ) didn

and

21 a-¢ a-

' €
f AT [ AT e e e
rot (a2 ~ 2ap cos® + p2)2 b /V(az - p2)3

p=a-¢
41:& ,‘, 4Jra. [235 _ €2 - Ena < 41rv
‘\/32 - Dz 4/2ae = 52

As a result, the following inequality is obtained

2
|<2nM6+8nM5 V& , 4m4(2ad + 5%)

e Ao

lﬁi
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The difference is estimated

] - 25.2 f(E n)'\,az - 52 _ nz dsﬂl 1
lAZI 1/;\[ 222 % (af - £2 - 12 (B - 2B - y2 - Z A R) zg# Fm VE < 88 -z an
2 : : e

On account of equation (3.46)

|as € 3M L/L/;% '\/az - £2 - n2 g£ an
: 0
S
2

8
‘("——“"" \l - p2 6
/ —3 - - n¢ dE dn = pZ pdo d = 2n —pdp = Zn’VZas - 52
—Zapcosé + a2 . a' -pz ’
a-

and therefore

But

| 8] < 6t f2ae

Thus for
A=A1+A2

the estimate is obtained

2
| o] <2 6+%§?3@+45r\/_%+25 + 35 AfZae
N

.Assuming
£=5
yields
| | a] < 247 AfeD
Thus

ff V -€ -n £(&,1) df;dn ;N(e)+01\/'§)

2alra + (a2 - E2 - n2)(a2 - x2 - y2 - z2 + R)




28 | | " NACA TM 1324
where 0(a) denotes a magnitude, whose ratio to « remains finite
when 8 approaches zero.

An estimate of the second integral entering equation (3.40)_is

given.:.

JZ(x:y;Z) =/:f Ef(gln) dE_, dT]
) JgJ VaZ-2ZnZ [2a2r2+(a2-£2-12) (a2-x2-y2-22+R)]

(3.48)

Again assuming ®<a/2 yields

a
72l < 2 _azan -4 o & a8
& o '\[az - - nz (ro + 8%) '\l 2. p2 (a? - 2ap cos & + p2 + 82)

_ oM p dp
& b Vaz - p24f(e2 + p2 + 82)2 - 4aZp?

but

p dp - p dp
Wﬁaz - oz‘Xkaz + o2 + 82)2 - 4aZp 2 /an - p2)3

p=a-¢g
1 e+ 1. 1
a2 - p o W/Zaa - g2 ® Vae
a, a
p dp . < p_dp

- St o2 1 5002 - 4ato0 . o2
e \fa z pijié + p2 + B ) alp e 2adAfa 0

- 28d 28 5
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hence

2anM (1 AT\
Jo | < +
|721 aV’E(VE 5'\/5)
~and for € =175 -

4 M

Jo| < (3.49
l 2 I a,\/ag ( )
From equation (3.40) and equation (3.423, the following is obtained
on account of the estimates (3.47) and (3.49):
oU VZN@)X’\/aZ-xZ-yz—z2+R
S —= + 0(1) (3.50)

In exactly the same way, there is obtained

U _ VZN(G)YVaz-XZ-yZ-zz+R (1) 5.51)
dy 7R + 0(1 (3.51
Finally,
= =ﬂ%§ £(g,m) a8 an
But
aK:-ﬁarc tanA+'____2_A___.._ -2z 4 Z(az+x2+y2+Z2_R)
.gz- JTI'S ﬂ(l + Az) 1‘3 rR(az - xz-‘_ yz - ZZ + R)
where

A=Va2_€2_£va2_x2_yz_zz+3

_ ar4f2

Assuming z>0,

. f—z‘gdgdﬁs on
r .
fo



30 ' : ‘ ' : NACA TM 1324

hence

T 1 + A2 rd

f——arc tan A+§__é_-_ _z_> f(g,q) dE dn|S 2(n + 1) M

and therefore

U _ 242 az{af + x% + y% + z% - R)ff . f(g,n)‘Vaz - &2 - n2 ar ay + 0(1)
2

z RafaZ - x2 - y2 - 22 + R alrf + (a? - €% - 18)(a® - %% - y2 - 22 4 R)

Again use is made of equations (3.47) and (3.42) and the fact that
for z>0

1
’\/a2 - x2 - y2 - z2 + R za

without difficulty:

R - a2 + x2 + yz + z8

U a2 4+ x2 4+ v2 4 52 -
Sz © a F X +y +2 R N(G)'\/ﬁ - a% + x2 ¢ yz + z8 ¢ 0(1)

s RaZAJZ

(3.52)

From what has been said previously about eqﬁation (3.38) it is
evident that if

F(&,m,t) = fo(g,n) + £1(g,m) cos wt + £5(k,n) sin wt (3.53)

N(e,‘b) = F(g;ﬂ;t)vaz - gz - Tiz dg dn (3.54)
S €2+n2+32_2agcose-2ansin6

‘the following results
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. . -
- R R B R _
P _ . x‘vg_ X vy z% + R N(6,%) + 0(1)
. dx T - 5
- _ ’VZ n“aR
5 2 w2 .2 . '
30 _ _ y\af - x® -y - 28+ R N(o,t) + 0(1) (3.55)
% 2
1[§.ﬂ aR '
aq); —t (a2 + %% + y2 + 22 - R).x
92 AfZ x2am - '
AR - a% 4+ x% & y°@ + 22 N(6,t) + 0(1)
or, in the coordinates &, 6, a
_ | R
N(6,t) cos 6 sin(; a)
oP 2
-g}—c = - + O(l)
e VZaS
. . f1
30 N(6,t) sin 6 31n(§ a)
S5 = - - + 0(1) > (3.56)
T 1[&16

30 N(6,t) cos(%cg

S2 ° + O(l)

nz 2ad

¥

The computation of the suction force W2 by equation (3.37) is

considered. An arc D'AB' of the circumference C 1is taken symmetrical
with respect to the x-axis with subtending angle 26g<wn. For the sur-

face o, the part oy 1is taken of the surface determined by equa-
tions (3.41) for constant g, where 6 changes from -65 to + 6y and
"o from -x to +m and two bases, one of which, 09, corresponds to

2] ='eo and the other, o5, corresponds to 6 = -6, where on these-
bases ® varies from O to B, and o from -n to +x. '

On the toroidal surface:
~“cos(n,x) = cos a cos.8 cos(n,y) = cos.a sin 6. cos(n,z) = sin a

... Ne6,t) sin(: «
5 =-§§.cos(n,x) + g% coan,Y) +-g§.cos(n,Z)>=- 2 'E;éﬁ ) +i0(1)
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Hence simple computation shows that

ff > (%— @] cos(n,x) as -L/:/ ? ds
60 x Clo] x .
= 1 N2(9,t) cos o cos 8 A6 du + L n2(e,t) cos 6 sin® 1 o do da +
2nt - 2nt 2
-00 -1 —90 ~ 1

8o
0/[%o) = —ZL"?)A'[ N2(6,t) cos 8 48 + 0(A[Fg)
8o

ol

In the same manner, the integrals taken over the bases o7 and op
have the order 0(®p). Hence if &, approaches zero, for the suction

force developed along the-arc D!'AB!', the following expression is
obtained

9o

£ N2(6,t) cos 6 46

270
-6o

Now when GO approaches n/Z, the required expression for the
suction force Wy 1is obtained in the following form:

b1

ol

Wp = Eﬁg . N2(@,t) cos 6 46 (3.57)

1
ol
E

Thé mean value of the frontal resistance is found. Equation (3.31)
shows that for the mean value of W

='Zp°ff§—ax tel\ox T2 ta\sk M) x| W

(3.58)
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In the same way, for the mean value of the suction force

11 )
2 .
o = P 2 1ly2 1 g2
W2 =23 l:NO (6) + 35 M=(68) + 3 Np (e):, cos 8 d6  (3.59)
1 |
2
where
fie(£,m) 4fa® ‘?-n ax dn |
Nk(e) = 2 k z zv (k = 0,1,2)
o E° + n + a% - 28 cos 6 - Z2an sin 6
' (3.60)
ﬁor the meén value of the frontal fesistance
W= W, - W, (3.61)
4. Example

If a plane wing varies its angle of attack periodically according
to the harmonic law so that the equation of its surface is

z = (Bg + By cos wt) x (4.1)
in the notation of section 1, the following is obtained
Eolx,y) = Box £1(%,y) = Byx ta(x,y) = 0
and therefore

Zo(x,y) = - cBg Z1(%,5) = = By Zp(x,y) = - ckByx .
. (4.2)
Z(x,y) = Z1 + 129 = - cB1(1 + 1 x)

The function f(x,y) corresponding to this value of the function
7Z(x,y) is determined by equation (2.18) where g(y) is the solution
ofimmgalemmﬁon(&lﬂJ

. Consideration is restricted to the solution of the inverse problem
by assuming that

Tolx,5) = Ag hf(x,y) = A + Bx
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where A and B are constant complex numbers and Ay 1s a constant

real number and the shape of the wing is determined correspondlng to
this function. By such a method it is possible to obtain also an
approximate solution of the direct problem of the nonsteady motion of
a wing according to the law (4.1) for the case of small frequenc1es of
vibration.

The forces acting on the wing are determined. For determination of

the 1ift force P, use is made of equation (3.13). The following rela-
tions are used

ff az-gz ndgdn——:ra jfg'\/a- ndgdn
s

(4.3)
as are equations (3.5) and (3.26), yielding without difficulty
P = - 40C Jpe (3 inkad Ae-iwé +
Tt 3
3 3
z " 2"
a? {}O + Re(Ae'i‘Dt] cos v dy + —g 8> Re (Be~1wt) cos? v dy
2 2
or
2 2 i . 3 .
p =8eca” ,  8ocat polpe-imt (1 . K&}l _ 46030 g (pe-iwt)
7 | 3 3
(4.4)

The moment of the pressure forces about the x-axis equals zero on
account of symmetry:

My =0 (4.5)
If the moment of the pressure forces about the y-axis is determined

by equation (3.28) and, in addition to the previously mentioned formulas,
use is made also of the formula

2Alz . 2. 2 _2 .5
ffg'\/a £ n¢ 4a& dn T e
S
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ad [AO + Re(Ae'ﬂnéﬂ cos? y dy - % a? Re(Be~1®0t) cos® v dr

]
ol
=
]
ol
2

or

3 3 il
= - %pca” _ 4pca’ oope-int) - S4pca” ~iwt . 3n
My = = Ao % Re(Ae ) —57— Re|Be 1 - 55 iak
' (4.8)

The frontal resistance is computed. First the suction force is
computed:

If
A = Ay + 1A B =By + iBy
according to equation (3.53)
F(g,M,t) = Ag + (A} + By&) cos wt + (Ag + ByE) sin wt

If equation (3.54) is applied and use is made of equations (3.5)
and (3.26),

. 4
N(6,t) = 2na(AgtA) cos wt+ A, sin wt) + 3 ma2 cos 6 (By cos wt+ By sin wt)

Equation (3.57) yvields without difficulty the expression for the
suction force:

Wp = _Eg 872 a2(Ag + Ay cos wt + Ay sin wt)z +

8 - . .
3.13 a3(Ag + A] cos wt + Ay sin wt)(B; cos wt + By sin wt) +

" 64 2 o - . 2
5 at (B, cos wt + By sin wt)
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or

2
Wz:-p——48' Aoz+—J=A12+!2-‘A22+—a.AlBl+—aAsz+-iazBl +i7a2322+

( oAl + 3 aAoB]) cos c;)t + <2AOA2 +—g aAoBz) sin ot +

1 1 2 I 7 4 2n. 2 4 2n 2
= -=A + = aAyBy - = aAsB =_ gfBy4& - =Z. a®B cos 2wt +
(Al 5 A" t g 8Py - g algby + o5 8By 7 2)

8 .
Q\J_Az + 5 ahBy + ¢ a.AzBl + 5= a2B1B2> sin 2wt (4.7)

The total frontal resistance is obtained by the eqﬁation
W=W ~ W2

where Wy 1is determined by equation (3.31)

For the mean value of the frontal resistance the following is

obtained:
W= - W (4.9)

2

, :
S 2D°ff g"g .a.C_Q + 1 Rel:<6_ + 1kq>§5:l x dy (2.11)
. S

For determination of the functions Qo(x,y) and Q(x,y) character-
izing the shape of the wing, equation (1.16) is used.

a .
-c 3}%9 = Zo(x,y) - _c(%{ + ik{,) = Z(x,y) (4.12)

2.
= 4pa 1 1,2 4 2p2 . 4 2,2
Wz = <AO + = Al + = Az + g a.AlBl + = a.A.sz + == 57 a Bl + E.? a B2
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vwhere by equation (2.17) in this case
Zo(%,¥) == Ag + go(¥) z(x,y) = -~ A - Bx + g(y)e~Tkx (4.13)

and the functions go(y) and g(y) in this case according to equa-
tion (2.18) have the form:

go(y) = ;%g x

-y2 3
Al

[

1
(2 + 32 - a2) 2 (a2 - 22 - n2)° cos v ar ax ak an

f (x2 + y2 + a2 - 2ax cos v - 2ay sin v)(E2 + 12 + a2 - 28€ cos v -~ 2an sin 1)
1

b
2

[\v)
3N
w
[
]

(x2 + y2 + a2 - 2ax cos v - 2ay sin v)(¥Z + n2 + a2 -~ 2a& cos v - 2an sin t)

2 34 1 1
ff elkX(x2 1 y2 _ a2) 2 (o2 - 22 - 12)% (A 4 BE) cos y dy ax ak ay

o 3 a
5 .
2
go(y) = a AO . cos v dy dx W
2 1 Nx2 + y2 - a2 (x2 + y2 + a2 - 2ax cos T - 2ay sin 1)
+oo i . .
> (4.14)
ANazyz 3 4
ely) = a8 - elkX(p + 2/3 aB cos y) cos y dy dx
n N Al X2 + y2 - a2 (x2 + y2 + a2 = 2ax cos v - 2ay sin y)
’ +on -z' 7T ~

Irﬁ;egra‘bion of equations (4.12) yields
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Ap 1

Eo(x,7) = =2 x - £ go(y) x + 1o (y)
' _ (4.15)
. . -ikx .. I . .
6(x,y) = (% + %g) Lo o7 31 o) xeriEX 4 n(y) eikx

vhere hp(y) and h(y) are arbitrary functions of .

The function gg(y) was obtained in reference 1, where, however,

errors slipped into the computations. Setiting

2
y == 3 cos 6 Hy (6) =X— sin 6 go(- a cos 6) (o< 6< )

(4.18)
gives in place of equation (4.22) of reference 1
2 2
1[2 1 l+sin%'9 1 1-005%6
H (6) =5 sin 6 + = sin 6 [ln —————— ] + = sin 6{ln +
0 4 8 .1 8 1
1 -sin< 6 l+ cos5 @
2 2
1 l-sinle 1 l-cos%G
cos 5 8 In —————————— + sin 5 6 1n (4.17)
2 R 2 1
l+51n-§6 l+cos-ée

 Hence setting hp(y) = O and Ay = ac in place of equation (4.23)

of reference 1 yields

3 1 Aza + Ao+ v 1 AVza + Ve - y\2
bo(x,5) =ax{ 7 - =5 {In - == [n -
8x \Vea - \B+y 8x A2a - '\/a -y
:SIZa 1n 3[23. - ’\/a +y Af2a in A28 - Afa - y
258 —\Fx_+_:7 ’\jra+ A+ Y 252 /\,a e Vza + Afa + y
: (4.18)

In particular for y =0 and y =+ a/ 2 the following values are
obtained in place of those given in reference 1:
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¢(x,0) = @x[—i— ~ —15 1n2(4\/?+1) + Z}rlz_z_ln(ﬁ+ 1ﬂ~ 0.9263 ax

Céc:i %) =

3 1 2 1 2
ax|> - —5 1n4(2 3) -——5 1n~3+
[; 278 +\/- 8n2

2 1
In(2+ A/3)+—=—= 1n 3|= 0.9146 ax

In the same way, the expansion given in reference 1 of the function
HO(G) in a trigonometric series in the interval 0¥6<m should be

replaced by the following:

. T sin(2k + 1) 8 (1 1 1
Ho(a)-sm.9<—z"’>+§; (e + 1) (‘z,'““%*---*zk—:—l)

k=1
(4.19)
that is,
o
Ho(0) = ; 5 Boxs1 Sin(2k + 1) 6

where

By = 0.9348 Bs = 0.1312 Bg = 0.0504

Bs = 0-2667 B7 = 0-0796 « s e s e .

In connection  with this, corrections should also be applied to
the numerical values,which are given in reference 1, of the coef-
ficients Bp of the trigonometric series for the circulation obtained
by the usual theory '

By

Il
It

2.2125 aca Bg -0.0296 aca Bg = -0.0067 aca

Bz = -0.0934 aca By

It
i

-0.0133 aca c s e s e e e

Hence for the 1ift force in place of equation (4.29) of refer-
ence 1, the following is cobtained: ) :

npcé By = 3.4755 pcza2

ol

Po-‘=
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which exceeds the accurate value by 36 percent.  For the induced.drag,
in place of equation (4.30) of reference 1, the following is obtained

Wo = 1.9350 pczazaz

which exceeds the accurate value by 87 percent.

Corrections are made in the third example given in reference 1.
The value of the definite integral is:

1
arc tany _nz 1 2
dy=g - 3 1n ('\/2 + 1)

Y e

Hence in equation (4.52) of reference 1 the coefficient of
sin 6 cos 6 1is simplified and assumes the value -3n27 In equa-
tion (4.53) the coefficient of sin 20 was incorrectly computed;
its correct value is

By = - 5 * 5 = ~-0.14555
In this connection, the value of the coefficient B, should also
be corrected:

By = -0.7436 aca®
For the induced drag and the moment of the forces about the x-axis,

in place of the values of equation (4.55) of reference 1, the following
is obtained:

W = 0.4343 palcla? M, = 0.5840 pafcZa
the first gives an error of 140 percent; the second of 55 percent.

The shape of the wing obtained

: Ao 1
Z(x}y)t) =72 X = ° gO(Y) X +
-iwt iBy 1 - e-ikx iBx 1 -ikx
Re{ e <A + k> o o = g(y) xe (4.20)

depends on the frequency of the vibrations and is deformed during the
vibrations. The rigid wing is of greater interest.

It 1s possible with the aid of the results obtained to obtain an
approximate solution of the problem of the vibrations of a plane cir-
cular wing for small frequencies of vibration.
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The case is now considered of a wing varying its angle of attack
periodically according to the harmonic law (4.1), so that equation (4.2)

. .. .holds.
"If o _
folx,¥) = Ag f(x,y) = A + Bx
equation (4.2) yields - -
Zo(%,y) = = g + &(y) 2(x,y) = - A - Bx + g(y) et (4.21)
If '
2,2 3
at-y¢ S«
a2 cos v dy dx
Goly) = —
i 1 /\/x2+y2-a2 (x2+ y2 + a2 - 2ax cos y - 2ay sin ¥)
+ o —é' 7T
AJa2-y2 % n
o (y) = a2 - elkX cos y dy dx
R X2+ y2 - a2 (x2+4+y2+ a2 -2ax cos y - 2ay sin
1 \x2+y (x2+y Y - 2ay T)
+o J= 1w
2
Na2-y2 % T
8.2 elkX 552 v dy dx
Go(y) = —
7 1 Afx2+y2 -a2 (x2+y2+aZ- 2ax cos Y - 2ay sin v)
+ o - .
2 (4.22)
Then
go(y) = AgGoly) g(y) = AGy(y) + BGa(y) (4.23)
In place of Gk(y),- their mean values are taken over the area of
the wing:
a a a '
Ek:{f Gy () 1/&2 - y2 d}}:{‘[ '\]az - y2 dy}:-jf?f Gk(y)'\/az - ¥y dy
-8 -8 -a :

(x = 0,1,2) _ (4.24)
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If the frequency of the vibrations is aésumed small, or more
accurately, the magnitude ka is assumed small, the expansion

e~ikX = 1 - ikx - % k2x2 - . . .

mey be limited to the first two terms.

From equation (4.21), the following approximate expressions were
obtained

Zo(x,y) = - -Ag + AgGo

(4.25)
_— L d
Z(x,y) = - A - Bx + (1 - ikx)(AG] + BG,)
Comparison with equation (4.2) results in:
pos
- CBo = - Ag + Aglg
Rad d
- cBy = - A+ AGy + BGgy
— o~
- cpyik = - B - ik(AGy + BGp)
whence
8 By (1 + 2ikGs) Bik(1l - 2Gy)
c c + 2i cBqi -
- A = l',, g B = —1 G}, (4.28)
1 - Gg 1 -G + ikGy 1 -G + 1iKG,
The following is computed
a T .
2 2 .
Gp = — Go(y)'\/az - y2 dy = - Go(- a cos 8)sinZ 6 a6

-8 O
But by equation (4.16)

go(- a cos 6) 1
sin 8 Gn(~- a cos B8) = sin 6 — = — 2]

hence, expansion (4.19) is used, yielding
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T . X .
- 2 2 (=2 n_1 4
GO—E\[‘HO(Q) Sin6d9='§(—§'-4>'§—-.'l§-ﬁ

and therefore

Go = % -0.4053 = 0.0947 Ag = 1.105cBq (4.27)

Equatiohs (4.26) show that in computing Gl it is sufficient to

use the terms of first-order smallness relative to ka, while in com-
puting Gp it is sufficient to use the principal term not depending

on k. For small ka +the following results

Gp = Go + ikGyy + o(%zaz ln.f%) Gz = Ggo + O(ka?) (4.28)

where Ell and EZO are the mean values over the area of the cirecle S
of the functions

2 x cos vy dy dx
(v) =% (4.29)
11 72 ,\/xz + y2 - a2 (x2 + y2 + a2 - 2ax cos v - 2ay sin v)
@ n

2 ad coszrdrd.x
G _2ad 4.30
20(¥) 3 ,12/ 1 ,\/xz +y2 - a2 (x2 + y2 + a2 - 2ax cos ¥ - 2ay sin v) ( )
+ 'EI[
In fact,
2_y2 3
a®- 2 x
| | Y 5
Gp - Gp = ikGqyp = i% G*(x,y,v) dr dx dy
. . - I
- 1 ' '
5 _ (4.31)
Where
ikx - 1 - 4 vAfa2 - y2
*(x,y,7) = (e 1 - ikx) cos yAa2 - y

4/k2 +y2 - a2 (x% + y2 + a? - 2ax cos v - 2ay sin 1)
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The interval of integration with respect to x is divided into two
parts: from'\/ aa.2 - yz to 2a a.nd from 2a to w». Since for a>0
Jeiow - 1 - icx,|<a,2

in the interval a2 - visx<e,, [ -1 - ikx|< (2ka)? and

therefore

za.z-y2 3 4

z
3f f @*(x,y,v) dr dx dy| < (2ka)? Gy<0.38k%a2
T
X (4.32)

On the other ha.nd for x=2a, Iyl <a, n/2<71<3n/2 the inequal-
ity holds

ol -

X2 + y& - azzi- x2 (x - a cos v)% + (y - a sin v)23 x2

As

ol e
a2

cos vy dy = =~

X
2

fﬂ/ el¥X _ 1 _ ikx = cos kx - 1 + i(sin kx - kx)

the following inequalities are obtained when, for clarity, ka is
assumed £1,

a 28 —é T ®

2 G*(x,y,y) dr dx dy|< 482 f 1 - cos Ex 44 4 kx - sin kx 4.
> ' "/?:rZL % x5
-8, «® % L 2a 28 )

< 0.2582k2 + 0.128%k? 1n = (4.33)
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- from which the first of the estimates (4.30) follows.
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Combining inequalities (4.32) and (4.33) yields, on account of
equation (4.31),

& - Ca - ikG 212 242 1
|6y - Cp - ikGyy | < 0.632%k% + 0.122%" In =

'In an entirely analogous manner, since, for o >0
el® - 1lca

from the inequality

a ‘Vaz-yz % x -
az - ! (e31kX _ 1) cos? Y‘\[az - 2 dy ax dy _
20 7 3,3 1 ’Vx2+y2-a.2 (x2 + y2 + a2 -~ 2ax cos v - 2ay sin 1)
-8 . =

27{

the inequality is obtained

a o a oo
< Zkatj/h AfaZ - yZ dy dx _ 2ka dy dt  _ 2ka2
352 xAx2 + v2 - a2 3n2 M/tz -1 3
-8 ‘Vaz-yz ,\/ Y -a J1

which proves the correctness of the second estimate (4.28).

le - Gzo

The integral (4.30) was considered in reference 1. The function
Hy(6) of ‘reference 1 is obtained if

2
%— sin 6 GZO{'a cos 6) = Hl(e) (ogog @)

© TFor this function the expression was obtained (equation (4.38)
of reference 1 with the correction of the error appearing therein

1
. (l+ cos 6>(1+ sin = 9)
e) L sine P

| 3n ) . 6
H;(8) = 5 <sin 9(1 - sin 3 - cos 3 +
2 2 2 12 (l - cos 6)(1— sin-%—' 6)

o) (- ein3 9
a>(1+sin% o)

ool ol

sin 8 cos 6 ln_tang +-3Z'

(1 + cos
> 1n

. (l-cos

(4;34)

ol | ol
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The expan51on of this function 1n the interval O<:9<:n in a trigo-
nometric series has the form

H1(6) = Z Torr1 sin(2k + 1) 6

k=0
where
1
2
vy = - % -f In ten3 dx = -0.69314
0
Hence
£ ' n
520 = %f Gpg(-a cos 6) sin2 @ 46 = ﬁf sin 9 Hy(6) 49 = i_i_é ¥, = -0.0468a (4.35)
o 0

The mean value Gp; 1is computed. Integrating (4.29) with respect
to 1 yields '

al-y
-3 [ e { et it SR
oo
x(a2 + x2 + y2) arc tan;;z_+}r2____¢£}dx (4.36)
(%2 + y2)(x + y2 - af) 2ax
it
X = at y = -a cos 6 % sin 6 G11(~a cos ) = H(O)

then
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p5in 8 2

4 =
H(e)ﬁ - sin 6 o :rtz _ t cos 8 1in t" + & cos 6
V-bz - sin® @ 2(t2 + cos? 8) 2(t2 + cos? ) 2 + 4 gind L g
A .

2

+2 - gin® @

2(+2 2 .
+°(t% + 1 + cos”® @) are tan - at

(t2 + cos? 6)(t? - sin? @)

Computation of this integral results in

i P -8 1 ) (l+cos%)¢l.+sin%9)
H(O) = = sin 6{1 - sin 3 - cos 5} + 5 sin 6 In

+
g 4 <l - cos% 9><1 - :sin-:éL 9)

l+sin;9

& sin 26 1n ta.ng - 1n 2
4 2 1
l+cosEG

Further,

bL 70

2 ’ . 2 28, .
Gy = ;f G11(-a cos ) sin® 0 d9 = ?J H(6) sin 6 46
0 0

The computation of the last integral leads to the result

- dud = 1.536 2 = 0.1556a
sin u 52

ng
l...!

1}
:?\) o
Wil

i

N
Ol
+
[N
%E\J“—'
o

0
Thus for small Xka

31 = 0.0947 + 0.1556ika Gy = -0.0468a

Substituting these values in (4.26) gives

A= cp 1 - 0.0936ika B = op 1k(0.8106 - 0.311ika)
= ©P1 05,9053 - 0.202ika = ©F1 70,9055 - 0.2021ika

47

+

(4.37)

(4.38)

(4.39)

(4.40)
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Thus for small fréquencies of vibration, to a first approximation:

Ap = 1.105¢Bg A = (1.105 + 0.144ika) cBy

B = 0.895ikepy (4.41)
For the periodic vibrations with small frequency, in accordance

with the law (4.1) of a plane circular wing, the previously derived for-
mulas may be used for the forces where the values Ay, A, and B have

the values just given. For the 1ift force, the approximate expression
is obtained from equation (4.4)

P = pc2a? {2.813{30 + B1(2.813 cos wt -1.766ka sin wt% (4.42)

The fluctuation in the 1ift force due to the vibrations of the
wing thus leads the latter in phase, the maximum value of the 1lift .
force being greater than the value which was obtained in the computa-
tion for the steady motion.

In the same way, equation (4.6) leads to the following expression
for the moment of the pressure forces about the y-axis:

My = - pc2ad {1.47350 + B1(1.473 cos wt + 0.867 ka sin aot} (4.43)

The component of the frontal resistance W; is determined in the
given case by the evident formula

Wy = P(By + By cos wt)
that is, .
W = pcfa® {2.8138x° + 1.406B;2 + (5.626 t -1.766ka sin wt)
[l = pcTa . 0 . 1 BOBl . cos wt -1. sin w +
1.4068,% cos 2wt -0.8838,% ka sin Zwt} (4.44)

The suction force is obtained from equation (4.7), restricted to
the first powers of ks,

Wp = pclal {1.554;302 + 0.777B1% + BoB1(3.107 cos wt + 1.888ka sin wt) +

0.777p1% cos 2wt + 0.944ka B1% sin 2(1)} (4.45)

The following expression is obtained for the total frontal
resistance:
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W =W, - Wy = pcZal {}.259302 + 0.630B12 + BBy (2.519 cos wt -
3.653ka sin wt) + 0.630B1% cos awt -1.827p;2 ka sin 2&%} (4.46)
For the mean value o the frontal resistance ._ |
| W = pc2a? {}.259302 + 0.63061%} | (4.47).
The flaéping wing is considered sucﬁ that
| z = BoX + By cos wt _ .(4.43)
In this case
Zo(x,y) = - cBg Z(x,y) = - ikcB; (4.49)
Comparison of these expressions with equation (4.25) shows that
in the case considered it is necessary to take
c ikepq (1 + ikG kZcp, G
Ao = Ef:E%5 A== ?1é1 n iké:) P=TT dlBi :iéz (4.50)

that is,
k2cpy (0.0947 + 0.1561ka)

1l -ika 0.0468
0.9053 - 0.202ika

A = 1keBy 575053 - 0.2021ka
(4.51)

Ag = 1.105¢cBg

or, by restriction to small terms of the second order with respect to Xk,
B = 0.105kZcBy

Ag = 1.105cB A = ikepy(1.105 + 0.195ika)
(4.52)

For the 1ift force
P = pcza2 {2.813[30 + 2.8131:.81 sin wt + O.SOJ_kzaBl cos wi} (4.53)

and for the moment of the pressure forces about the y-axis
M, = - pcZad {}.47330 + 1.473kp; sin ot -0.181k28B; cos wty (4.54)
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The component of the frontal resistance
Wy = PBg = pcal ‘{2.813502 + 2.813kBoP1 sin wt + 0.301kZaBoB] cos wt
(4.55)

The suction force will be, with an accuracy up to terms of the
second order with respect to ka:

Wy = paZc? {;.554302 + 0.777k?p 2 -0.376BpB ks cos wt +
3.107kBpB; sin wt -0.777k%p; % cos &n{} © (4.56)
For the total frontal resistance
W = pafc? {;.259502a ~0.777k%B; 2 -0.294kB(B; sin wt +
0.677k?apyBy cos wt + 0.777k%p; % cos zw} (4.57)
Its mean value will be

W= pmzcz'{}.259502 -o.777k251%} (4.58)

so that a decrease is obtained in the frontal resistance as compared
with the wing which does not execute a flapping motion.
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~ - THEORY OF WING OF CIRCULAR PLAN FORM®
By‘N. E. Kochin

A theory is developed for a wing of circular plan form. The dis-
tribution of the bound vortices along the surface of the wing is con-
sidered in this theory, which has already been applied in a number of
papers. In particular, the case of the circular wing has been examined
by Kinner in reference 1.

A second method is considered herein which permits obtaining an
expression in closed form for the general solution of this problem.
The wing is assumed infinitely thin and slightly cambered and the problem
is lipearized in the usual manner.

Comparison of the results of the proposed theory with the results of
the usual theory of a wing of finite span shows large divergences,
which indicate the inadequacy of the usual theory of the case under
consideration. ZFor the wings generally employed in practice, which
have a considerably greater aspect ratio, a more favorable relation
should be obtained between the results of the usual and the more accurate
theory.

1. Statement of the Problem

The forward rectilinear motion of & circular wing with constant
velocity ¢ 1is considered. A right-hand system of rectangular
coordinates Oxyz 1is used and the x-axis is taken in the direction
of motion of the wing. The wing is assumed thin with a slight  camber
and has as its projection on the xy-plane a circle ABCD of radius a
with center at the origin of the coordinates (fig. 2, in which a section
of the wing in the xz-plane is also shown).

Let

z = §(x,¥) o '_ (1.1)

represent the equation of the surface of the wing, where the ratio §/a
as well as the derivatives 3f{/dx and 0Of/dy are assumed to be small
. magnitudes. :

*"Teoriya kryla konechnogo razmakha krugovoi formy v plane."
Prikladnaya Matematika i Mekhanika, Vol. IV. No. 1, 1940, pp. 3-32.
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The coordinate axes are assumed to be immovably attached to the wing.
The fluid is considered incompressible and the motion nonvortical, steady,
and with no acting external forces. The velocity potential of the
absolute motion of the fluid will be denoted by @(x,y,z) so that the
projection of the absolute velocity of a particle of the fluid is deter-
mined by the formulas

) S o (1.2)

v, ==,V =m; VvV = —
XY ¥y 7o
The equation of continuity
Bvx.+ va . ov, .
ox oy oz

shows that the function ¢ must satisfy the Laplace equation

Gk + 3% + Gl =0 (1.3)

dx2  dy% 22

At the leading edge of the wing the velocity of the fluid particles
is assumed to become infinite to the order of 1/1/5 where & 1is the
distance of the particle to the leading edge; at the trailing edge the
velocity is assumed finite. From the trailing edge of the wing a
surface of discontinuity is passed off on which the function ¢ suffers
a discontinuity. The function ¢(x,y,z) and all its derivatives over
the entire space bounded by the said surface of discontinuity and the
surface of the wing are continuous.

The problem is linearized in the following manner. The function @

is assumed to suffer a discontinuity on an infinite half-strip § located

in the xy-plane in the direction of the negative x-axis from the rear
semicircumference BCD "of the circle S +to infinity. In the same
manner, the condition on the surface of the wing is replaced by the
condition on the surface of the circle 8 located in the xy-plane

and in this way the function ¢(x,y,z) is assumed to be regular in the
region obtained by cutting the infinite half-strip Z and the circle S
from the entire infinite space.

The boundary condition must be satisfied on the surface of the wing.

%% = ¢ cos(n,x) (1.4)
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where n ‘+is the direction of the normal to the surface of the wing.
The direction of this normal, because of the assumption of small curva-
‘ture of the wing, differs little from the direction of the z-axis. If
small terms of the second order are rejected according to the formula

ot
cos(nyx) = - X (1.5)
_ ag 2 ég 2
"/I * (ﬁ) * (ay)
in place of equation (1.4), o
®_ %
3z - S

‘'This condition must be satisfied on the surface of the wing, but
it is assumed satisfied on the surface of the circle S, that is, for
z = 0; this again reduces to the rejection of small terms of the second
order by comparison with those of the first order.

The boundary condition is obtained:

for x% + y2< g% (1.8)

(E = - c BE(X:Y)
92 /30 ox

which must be satisfied on both the upper and lower sides of the
circle 8.

The boundary conditions are set up which must be satisfied on the

surface of discontinuity Z. On the surface of discontinuity at the

trailing edge of the wing, the kinematic condition expresses the con-
tinuity of the normal component of the velocity, that is, the magnitude
aw/Bn must remain continuous in passing through the surface of dis-
continuity. Since on the surface of discontinuity the direction of the
normal differs little from the direction of the z-axis, transfer of

the condition on the surface of discontinuity to the half-strip 2,
gives the equation

(2_’;- z=+0 (%’i)

for ly|< a; x2 +y2>a2; x<O0 (1.7)
Z==0 .

which expresses the continuity of ap/az in passing through the surface
of discontinuity Z. ' . :
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The dynamical condition expressing the continuity of the pressure
in passing through the surface of discontinuity_ 2 is considered,

- In order to determine the pressure .p, the formula of Bernoulli is
applied to the steady flow about a wing obtained by superposing on the

flow considered, a uniform flow with veloecity ¢ in the direction of

. the negative x-axis.  In this steady flow the velocity projections are

determined by the equations :

oP _ 99 _ o9
. Vx=-C+g:;, Vy 5‘;, VZ-—g

and therefore the formulas of Bernoulli reducés to the form

2 2 2 '
(o0 & () - (]
= ==|[~c+ =—)} +|[=—) +|=— + constant 1.8
P 2 [( ox oy oz (1.8)
Rejection of small terms of the second order results in

p = +pe 2  (.9)

where p, is the value of the pressure at infinity.

Since the pressure must remain continuous in passing through the
surface of discontinuity at the trailing edge of the wing, the equation
obtained shows that OP/dx does not suffer a discontinuity on the

surface of discontinuity. Transfer of this condition to the surface J
yields the condition

(%9) = (éf) for lyl <aj; x° yz >a?; x<o0 (1.10)
% 7=+0 X Jz=—0

which expresses the continuity of Bw/ax in passing through 2.

The function ¢ suffers a discontinuity on the surfaces S
and 3, which means that along the surfaces S$ and I, surface

vortices are located as shown in figure 2. The direction of such a
surface vortex is perpendicular to the direction of the relative velocity
vector of two particles of the fluid adjacent to the surface of dis-
continuity on its two sides. In particular, on the surface §, on

account of equation (1.10), only o9/dy suffers a discontinuity and

therefore the vortex lines on § are directed parallel to the x-axis
as shown in figure 2.



LTS

NACA TM 1324 _ ' 55

Since all the vortices lie in the xy-plane, at two points symmetri-
cal with respect to the xy-plane, the values of 0@/dz will be the same,
whereas the values of 0@/dx and 0¢/dy will differ only in sign.

It may therefore be assumed that
(P(X,y,—z) = = ‘P(x:YJZ) (l'll)

Assuming in particular z = O yields

‘P(XJY:O) = 0

in the entire xy-plane.with the exception of the circle S and the

strip Z (on which ® suffers a discontinuity).

Since on the strip ¥ both condition (l.lO) and the condition

derived from equation (1.1l) must be satisfied

(g; 2=+0 - (g% z=-0

and
o)
(?) =(§x? =0 for |y] <a; x% +y%>a?; x <0 (1.12)
Xl 2=+0 z==-0

Finally, since the fluid far ahead of the wing is assumed to be
undisturbed, the condition at infinity is

.99 . 3¢ . 09
lim - Hm o= lim 2=0 (1.13)

X+t x*e Y e

. In the hydrodynamic problem under consideration, account is taken
of the distribution of the vortices along the surface of the wing. It

is this circumstance which makes the treatment more accurate than

the usual wing theory.

The hydrodynamic problem is thus reduced to the following mathe-
matical problem: To find a harmonic function ¢ (x,y,z) regular over
the ‘entire half-space 'z > 0, which on the circle S satisfies the
condition

30 at |
(5; s =- ¢35 (1.14)
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.Qﬁ the strip X , the condition

-(92 =0 - (1.15)
ox 70

on the entire remaining part of the xy-plane, the condition

®(x,y,0) =0 (1.18)

and the derivatives of which remain bounded in the neighborhood of the
rear semicircumference BCD, while in the neighborhood of the forward
semicircumference BAD +they may approach infinity as 1/1/5 where B
is the distance of a point to the semicircumference BAD. Finally
the cendition at infinity (1.13) must be satisfied. :

An expression for the harmonic function ¢(x,y,z) is given in
closed form depending on an arbitrary function f(x,y) satisfying all
the imposed requirements besides equation (1.14). The function ¢(x,y)
can be determined from this condition, that is, the shape of the wing
corresponding to the function f(x,y). An integral equation is also
given, the solution of which is reduced to the determination of the
function f(x,y) for the given shape of the wing, that is, for a
given function €(x,y).

2. Derivation of the Fundamental Equation

Inside the circle ABCD, the point Q with coordinates &, 7 1is
taken and the function K(x,y,z,g,n) constructed, where x,y,z are
the coordinates of the point P, according to the following conditions:

(1) The function K, considered as a function of the point P, is
s harmonic function outside the circle ABCD.

(2) The function K Dbecomes zero at the points of the plane xy
lying outside the circle ABCD.

(3) The derivative OK/dz becomes zero at all points of the circle
ABCD, except the point Q.

(4) When the point P approaches the point Q, remaining in the
upper half-space z > 0, the function K increases to infinity but

the difference K - (l/f), where

1"=,J(><-E)2+(y—n)2+z2

remains bounded.
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(5) The function K remains finite and continuous in the neigh-
borhood of the contour C of the circle ABCD.

Because of the second condition, the-values of the function K at
two points situated symmetrically with respect to the plane xy differ
only in sign: ' C

K(x,:f,-z,E,Tl) = - K(x,y,Z:E,ﬂ) | : (2-1)

as follows from the principle of analytic continuation. It is then
evident that if the third condition is satisfied on the upper side of
the circle’ ABCD it will be satisfied also on the lower side, since
according to equation (2.1) the derivative OK/dz has the same value
at two points situated symmetrically with respect to the xy-plane.

It is evident further that when the point P approaéhes the point
from below so that z< O then K(x,y,z,&,m) will behave as - l/r.

~ Because of the third condition, the function K can be continued
into the lower half-space through the upper side of the circle ABCD
as an even function of z. Thus a second branch of the function K 1is
assumed, again determined over all the space outside the cirecle ABCD
and differing only in sign from the initial branch of the function K.
It is then evident, however, that at the points of the upper side. of
the circle ABCD, the values of the second branch of the function K
and its derivatives coincide with the values of the first branch of
the function K and its derivatives at the points of the lower side
of the circle ABCD. That is, in the analytic continuation of the
second branch of the function K through the upper side of the circle
ABCD into the lower half-space, the initial branch of this function
is again obtained.

A two-sheet Riemann space is considered for which the branching
line is the circumference ABCD. In this space K(x,v,z,E,n) is a
single-valued harmonic function remaining finite everywhere with the
exception of the two points Q having the same coordinates (g,n,o),
but belonging to two different sheets of space; in one sheet the
funetion K behaves near the point §q as l/r and in the other sheet
as - l/r. Such a function K(x,y,z,E,n) can readily be constructed
by the method of Sommerfeld (reference 2). 1In this way for the case of
a two-sheet Riemann space having as branch line the z-axis, a harmonic
function V(p,p,z) (p,P,z being the cylindrical coordinates of
the point) is determined which is single-valued and continuous in the
entire two-sheet space with the exception of the points Q and Q'
having the cylindrical coordinates (p',9',z') and (p',-9',z'),
where near the point @ +the function V behaves as 1/r and near
the point Q' as - l/r, where :

r:=\/p2 +p'2 - 2pp" cos(p - ¢') + (z - z')2

r' =l\/p2 + p'2 - 2pp' cos(p + @') + (z - z')2
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This function V has the form:

2 o+ 7T 1 T!
V= — {(=arc tan i - —arc tan o+
T |r g -7 r' g -1

|

where

cz—L-J(p+p')2+(z-z')2; 't=cos-2—5——(-p—,' 'r'=cos—2—
2+/pp’

Setting, in particular,

' =n; T =,Jp2 + p'Z + 2pp' cos @ + (z - z')2

ylelds
+ o - 2
V = E- arc tan g+T -arc tan T\ — arc tan—T—__'_
nr o ~-7T o+ nr _\/02_12
or finally
2+4/pp' sin %
V = —arc tan
nr r

An inversion with respect to the point with coordinates p = a,
¢ =0, 2z =0 1is carried out.

4 ' 2
_ 2a“(x; - a) o 2a%(, - a)
p cos @ = a + H p' = a +

(xl - a)2 + yi2 + 2,2 (8, - a)2 + ;2

Zazyl Zazzl-
p sin @ = ; 2=
(xl - a)2 + ylz + zl2 (% - a)2 + ylz + zl2
2
2! = Za Cl

- (51 - a)Z + ClZ

The function

282y

V, =& —————————— — — —
! ”’(xl - a)2 + ylz + zl2 \/E%l - a)d + §2
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expressed in the variables X175 Y15 27 1is then, as is known, a harmonic
function. _Computing it and replacing X1, ¥1, 21 by ¥, Z, X and EJJ Ql
by n, E yield the required expression of the function K(x;&,z,g,n):

\/a - -'nz \/az - x2 - yz - z2 + R
(2.2)
/2 ar

K(x,y,2,E,7) = ——-arc tan
r

valid for gz > 0, where

r=W(x- 82+ (y - )%+ 2
(2.3)

R=’\/(a2-x2-y2—z2)2+4az ’V(a + x2 + y© +z) .4a2(x2+y2)

That this function satisfies all the above set requirements is
easily verified; the arc tangents must be taken between O and ﬂ/Z,
for z < 0 the value of the function K is obtained by equation (2.1).

The following function is set up:
1
q)l(x:Y;Z) = 55X J\J‘ K(x,y,2,€,n)F(E,n)dEdn (2.4)
]

where f(x,y) is an arbitrary function, which is continuous together
with its partial derivatives of the first and second order in the entire
cirele S, and the integration extends over the entire area of the
circle S. Evidently, ml(x,y,z) is a harmonic function in the entire

space outside the circle S. Because of the first property of the
function K, the function ¢l(x,y,z) becomes zero at all points of

the plane xy which are outside the circle S. Hence equations (1.15)
and (1. 16), which must be satisfied by the solution ¢(X,Y; ) of the
problem posed in section 1, will be satisfied for the function @ (x,y,z)
The function @4(x;y,z) does not in general satisfy the conditlon of
the finiteness of the derivatives of this function on the rear half of
the contour of the circle 8. For this reason, a function such that

the obtained function ¢ (x,y,z). also satisfies this condition is added

to q’]_(x:Y:Z)

‘The following equation is evident: -

3or
-2 XK £(g,n)azan
ox 2% g ox
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_ The character of the approach of the function BK/BX to infinity is
considered as a point approaches the contour C of the circle S. .As
may be easily computed

EK = - E-(-E----—g——)-zatrc taanaz - gz - nZ «[?2 - %% - y2 - 22 + R -
& /7 or

2~/2a ’g/a2 - £2 - nz 1/52 - x2 - y2 - 2z%2 + R {% -E 4_%}
2

T 2a%r2 + (a2 - £% - n2)(af - x% - y% - 2% + R) R

. (2.5)
If a point with coordinates Xx,y,z 1is near the contour C of the

circle S the distance of this point to the contour C is denoted

by ©®; then

5 ="/a2 + x2 + y2 + 22 - 2aWNx® + y2 (2.6)

Hence near the contour C, the approximate equation holds:

R = 2ad (2.7)

. When the fixed point &,7n lies inside the circle S while the
point with coordinates X,y,z 1lies near the contour C of the circle,
then, as follows from equation (2.5),

X AT F A E L Fenso) (29)
nar

where the symbol ©0(1l) denotes a magnitude which remains finite when

& approaches zero. Thus OK/dx has the order 1/4/5. The principal
part of BK/BX is not a harmonic function. It is not difficult, however,
to find a harmonic function having the same infinite part near the
contour C as BK/Bx. For this, it is sufficient to form, after the
analogy of equation (2.5), the derivative OK/OZ; this derivative
remains finite near the contour C of the wing; morgover it is easy

to see that

3K . oK _ 2+/2 a\[az - x2 - y2 - 22 + R
ox O 7 [Zazr + (a -E2 - q2)(a? - xZ - yB . g2 4 R)]

xwfaz-gz-anr 3 } (2.9)
R el - g% P '
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This function is harmonic and differs from BK/BX by a quantlty
whlch remains flnlte near the contour C.

By computation, it is further shown that the function Jjust described
is represented in the form of the integral

3 . -
K BK_ 1 J" v -52-712{& - xB —3[2'-1.2+R cosrdr
HTE= 2 2
“x (xB+y°+ 28+ a - 2ax cos y-2ay sin v})(& +1%+a®- 2ak cos 1- 2an sin 'r)

(2;10)

where thé function

Nﬁaz - x2 - yz - z2 + R

x2+y2+z2+a2

- 2ax CcoOS v - 2ay sin v

is a solution of the equation of Laplace having the circumference C as
the branching line and the point with coordinates (& cos v, a sin y, 0)
as a singular point. From this it follows that the function

Q-(.,. 1 . . daz‘sz-ﬂzvaz-xz-yz—z2+Rcosrdr
x nz-\/z—ﬂ (x2+y2+z2+a2- 2ax cos v - 2ey sin v)(E2 + 12 + a - 2ak cos v - 2an sin r)

’\/ -Ez‘ﬂz‘Ja-x-yz-zz+Rcosrdr (2.11)
BE 2-\/— (x + y2 & 22 + 8% - 28X cos y - 2ay sin y){(£2 + 12 + 8% - 2ak cos v - 2ay sin 1) )

remains finite near the p01nts of the rear semicircumference of the
circle S.

Therefore it is assumed

--—'—— ff(s,n){ax+

[a2 _ 2 _ n2 2
‘\/a-E-n‘\/a-x-yz-z+R°°SI—T }dcdn (2.12)

ﬂ-\/—f (x? +y2 + 28 + 8% - 2ax cos 1 - 2ay sin 7){E2 + 42 + a® - 2ak cos v - 2an sin 1)
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. Integreting with respect to x and considering the condition at 1nf1n1ty
(1.13) yield the final equation

o(x,¥,2) = fff(gﬂl) {((XJYJZ)E:TI) +

2
1 ‘Va-g 2{a.-x- - 22 + R cos v dy gx dd(213)
— Tl .
nz-\/ﬁ B (x2 + y2 + 22 + a2 - 2ax cos v - 2ay sin v} (&2 + 12 + a2 - 2af cos y ~ 2an sin 1) g
qoV2

This equation may be written in somewhat different form. Because of

equation (2,11)
L) 1 3K 1
x - T en j‘f—a—gf(g,n)didn-zﬁﬂs *
S

Va. _EZ_,]ZIJ& -x2 - y2 _ 22+ R cos y ar £(z,m)aE an
2
(x + y2 + 28 + a? -2axcosy-2aysinﬂ(£2+n +a2-2agcosr-2ans:.nr)

Since the function K becomes zero on the contour C

ff £(g,m)dE dn = f'f K—dz an (2.14)

Introduction of further notations

i - &8 - 12 £(&,n)dE an -coly); &=
Znsw/— J“J" i o ok Fen)

52 + n + a2 - 28E cos v - 2an sin v

(2.15)
results in
d 1 :
o _ L J“J“ K(x,¥,2,E,0)F(E,)dE an +
dx 2rn
B S
2 «/ 2 - 52
-2+ R G ces
(r) LS (2.16)
+y2 + 22 + - 2ax cos y - 2ay sin v

NI:
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and after integration with respect to x

. .
P (x,y,z)- = %f‘r‘r K(x,y,z,E,n)dx F(E:n)dg an +
g 4w

bl
X 2 .

ﬁ/az - x% - y% - 22 + R G(y) cos y
x2 + yz + z2 + a? - 2ax cos v - 28y sin y

dx dy  (2.17)

The given functions F(g,n) in the circle S and the function
G(y) in the interval (-=/2, n/2) completely determine f(,1), so
that the equations (2.13) and (2.17) are equivalent.

The equation @(x,y,z) obtained satisfies the conditions imposed
in section 1.

This function is evidently a harmonic function in the entire space
exterior to the circle S and satisfies the conditions at infinity,
equation (1.13).. From equation (2.12) it follows, that in the plane xy

for x2 + yz > a2 the condition is satisfied:

3_*9) _ o
ox z=0

and from equation (2.13) it follows that

¢ (x,y,O) =0
in that part of the plane xy which lies outside the circle S and

the strip 3.

It remains to prove the finiteness of the first derivatives of
the function ¢(x,y,z) st the points of the rear semicircumference C
and to determine the behavior of these derivatives on approachlng the
points of the forward semicircumference C.

..In considering the neighborhood of the rear side of the circum-
ference C, equation (2.16) may be used. The latter shows that O@/dx
remains continuous at the points of the rear half of the circumference C
and becomes zero at these points.

-The behavior of the derivatives with respecf to y and z of the
following function is considered: -
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#6v,2) = [ [ Ky, z0)F(Endgdn (2.18)
J [ e _

near the contour C.

ff F(&,m)dg dn (2.19)

Similarly to equation (2.9),

BK aK 2a-\/—Va2-x2-y2-22+R
By Bn n[éazr + (a2 - BB - 12)(a? - x% - yB . 22 4 R)]
y\a? - £2 - o2
R Y - (2.20)

and similarly to equation (2.14),

ff F(g,q)dE dan = J;fK-g—f;-dg d'r'] | (2.21)

where this part of the integral remains finite everywhere and on the
contour C becomes zero.

In order to evaluate the remaining part of the integral equa~
tion (2.19), the following two integrals are considered:

N
5y (err2) = ff Nef 2% - o7 aran
YV 2% 4 (a2 - EZ - 12)(a? - %% - y& - 2R + R)
' : > (2.22)

dr 4
Jp(x,¥,2) = ff —
a2 _,]2[2a22+(az_gz_nzxaz_xz_yz_22+R)]J

Both, on account of the symmetry, depend only on x2 + yz and z;

hence without restricting the generality, it may be assumed that y = O,
X > 0. The distance ® of a point with coordinates (x,0,z) is
introduced to the contour C:
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8 =’V(a. - x)2 + 22
Since
R;|x2+z2-a2|

the following relation will hold:

J1(x,0,2) € ff Ne? - &2 - 42 agay
< 282 [(x - B2 + 92 + zz]

Polar coordinates are introduced

E=pcosd; N=psind

whence
.‘/ 2 2
-~ dp 4
Jl(x 0,z) < e p dd
2a2 [p - 2px cos § + x2 + zz]
Since

2n

f d<¢ _ 27
2 2 2 - 2
o p” - 2px cos § + X" + z V(;+x2+22)2_4p2x

hence

"z Wa2 - o2 ap
’\l(p + x8 + zB)2 . 4p2 %2

o
Aaf - o2 a
Jl(x,O,z)\ 3 =
'\[(p + x2)2 o 4p? xP

a
=.’% pVa? -pzdﬂ<it pdp =
e ~a

a o X2 —p ' a /s A/az__pz

For x 2 a

2

65
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While for x < a, use i

R> a2 - x2 - 22

to .obtain

is made of the inequality

2 2 2
-Ya o - -7 4dEdy
J]_(XJO:Z) < i T v e 5 E

NACA T™ 1324

2 Y aZ[(x - E)2 + 12 + 22+ (a2 - g2 - 12)(a® - x2 - 22)

'\/ 2. p2 dd dp
- 2a® xp cos $ + p2(x2 + z2)

oAs2- o2 dp JrL/?pﬁlaz-p?' d _ .
4 _x2,2
‘\r +p2(x2+zz)]2 4atx2,2 o B -xf

The following inequality results:

T
Jl(XJ.V7Z) < a

The second integral is considered. As before,
a

d,
J2(x,0,2) < = 0 0

z n :

For x 2a

_ 4022

p dp

(2.23)

(2.24)

T

b4 p dp
J2(x,0,2) < —zf <_€
*Uo 1\/(52 - %) [(p +x)% + Zz] [(p - x)2 4+ zz] a‘

’Vz-pz‘\/(a-x)2+z 8%

For x&€ a an inequality of the type in equation (2.23) is used:

d
0 '\/(a.2 - pz)[a4 + p2(x2 + 22) + ZaZXp][az - xp)2 + pzzz]

‘ &
s—% p dp

(a2 - 02) [(a2 - xp)2 + 22p7]

LS
a

pdp -
0 a2 f\laz - p2
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If 2z Za - x and therefore <€ z+/2, then

' dp 7o 72
2 =s3- S
2z o ﬂ/az _ pz Z2acy a261/§

but if O <z <a - x, and therefore 5 < (a - x)~/Z, then

’ Jz(xﬂ,o,z) <
a,

T (x,0,2) €= p_de EJ[E

l p dp 7
< —
2
"o (2-xp)¥a2 -2 as.Jo (a-x)Val - p2 az(a x) a2

The following approximation is obtained:

J2(x,¥,2) < (2.25)

a281/§

where

3) =\/(a -\sz + y2)2 + Z2 (2.286)

Near the contour C

R = 2ab (2.27)

If this relation, the evident inequality

'az - x2 . y2 - z2| s R

and the obtained approximations are used, the followlng approximation
is obtained from equation (2.20):

ff (- + —I-{) F(,n)ag an| = ; (—3%)

It is evident from equations (2 19) and (2 21) that near the

contour C .

__ =0 <ﬂ/T) ' “ (é.ze)
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The following derivative is formed:

- ff P(&n)ag dn
Bz
' But
2
gg .22 o ian A+ 2 A - [_3% N z(a2 + x2 + y2 + 22 - R)

2 o T1+A° LT rR(a - x2 - y2 - 22 1 R)

where

A= ﬁlaz - EZ - nz\laz - x2 - y& - z2 + R

ar+/Z
Hence if
|[F(g,n) | <M
- then, on account of the inequality
A 1
Tea oz

for z > 0 the approximation results:
2

< oM ff—z— dE dn +
oz o 1
S
2 azM(a? + x +y2+z2 R) ff N8?- g2 - q2 dgdn
2821l + (

KR‘\/;Z_XZ a2- 22 12) (a2 - x2- y2- 724 R)

Noting that

Jquwjl dt dn <€ 2xn
o
S

and making use of approximation (2.24) yield
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- 2 . 32 4 w2 oy g2
§2<4KM+2-\/§M_Z(,8' + X° + y° + 2z R)
z R'\/az - x2 - y2 - 22 + R
Since for z >0
Z = z\/R-(az-. x2 - y2 - 72) =-'\/R- a2 +x2+ y2 + 22
24r  ARZ- (a2- xB- y2 - 22)2 za

\/az_- x2 - yz- Z

hence
dz aR :
Now when the point P(x,y,z) 1s near the contour C, then because of

R= 2ad; |x2+y2+z2—a2sR

there is obtained
(2.29)

-0 :§§>

o9
oz

Since the derivatilves

Equation (2.16) is again considered.
Ve? - - - 5
= H

R

-i’\/;z-xz—yz-zz+R
dy
g(a.z+x2+y2+z'2 —R) >(2 30)

ai'\/gz-xz—yz-zz+3=
2 o R‘Vaz-xz-y2-22+R

(a2 + x2 + y2 + 22 - R)AJR - a2 + xB + y2 + 2

J

" 2aR
have near the contour C the order 1/4/5, it is clear from equa-
tion (2.16) and the obtained equations (2.28) and (2.29) that at the

points of the rear semicircumference of C there is the estimate
(2.31)

ach_o l' ’ az(p—.o _l_
axdy (_Jg) T 3z (_\/g)
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But is is then evident that the derivatives 3p/dy and op/dz are
finite at the points of the rear semicircumference C.

The behavior of the derivatives of the function ¢ near the for-
ward semicircumference C can readily be determined, starting from
equations (2.12) and (2.13).

The first of these equations may be written in the form:

3
2 T R "
K af- X6 -y~ 24+R G cos .
X (g mag an - V (1) cos ¥

S <o
Ox T x - x4 y2 4 22

dy
+8a% - 2ax cos Y- 2ay sin y
2

(2.32)

But on the one hand, the estimate

J;f%l—; £{g,n)agdn = ¢ (:;—9

holds for the neighborhood of the entire contour C; on the other hand,

on the forward semicircumference C, the second integral of equation (2.32)
evidently remains finite. Hence for the forward semicircumference ¢ the
first of the estimates is obtained

@) B e e

while the latter two of these estimates are obtained in a similar manner
from equation (2.13).

In this manner all the conditions which must be satisfied by the
function o(x,y,z) are satisfied.

The shape of wing to which the obtained solution corresponds is
explained. By equation (1.14)

ot 0P
c = = - <g;> ) (2.34)

Hence it is necessary to find the value Bw/az in the plane of the
circle S. Both sides of equation (2.13) are differentiated with respect
to z and then 2z set = 0. On account of the very definition of the
function K,



1
1i a—Kf( Ydgdny = 1i a;f( )d d. 25 ( )'
-1im az'E:ﬂ E n*;ilo S0 E,N)AE QN = ~ oni{X,y
S s :
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Z=-0

(2.35)
Moreover, on account of equation (2.30),
5 0 for x2 + y2< a’
lim =—Afa® - x2 - y2 - 22 + R = a-~/2
-0 92 ' for x2 + y2 > a2
z 2 1 42 _ g2
_ \lx +y% - a :

If this is taken into account,

(—23' = - £(x,¥) + &(y) | (2.36)
2/2=0

where

31
by 7 N
gly) = 2= a® - g% - 1° cos yf(¥,7)dy dx 4g dy
2’ SY Vi x N+ 3% a%(x® + ¥ + af - 2ex cos v - 2ay sin y) (52 + 12 + 22 - 28X cos v - 2an sin 1)
. z

(2.37)

For the function (x,y) +the following expression is found:
X

' 1 g(y)
t(x,y) = 3 f £(x,y)ax - =275 x + g (v) (2.38)

0 )
vhere g1(y) is an arbitrary function of y.

Thus, for the assumed degree of approximation, the bending of the
wing in the transverse direction produces no effect on the form of the
flow.

It is assumed that the shape of the wing is given, that is, the

function ¢(x,y) and therefore the following function are given:

e 28 = M(x,y) o (2.39)
ox .
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From equations (2.34) and (2.36) it is clear that
£(x,5) = M(x,y) + g(y). (2.40)

Substituting this value in equation (2.37) and introducing the
notations

Ny)—,_-_a_x
( 20
'y
fff Va2 - #2 - 42 M(E,n) cos y dy dx dEdn
Nx2 + y2 - a2(x% + y2 + a2 - 2ax cos v - 2ay sin 7)(£%2 + 12 + a2 - 22k cos v - 2a7 sin 1)

a (2.41)
H(Y;Tl) =-3 x
2n

-n? Hal-y?

152_52_112 cos y dy dx 4&
_"az_ng - - ‘sz + y2 - a2(x2 + y2 + a2 - 28x cos v - 2ay sin v){(EZ + 12 + af - 2af cos v - 2an sin y)
2

give an integral Fredholm equation of the second kind for the determi-
nation of the function g(y):

a

g(y) = N(y) +f E(y,n)e(n)dn (2.42)

~-a

In consideration of examples, a function f(x,y) shall be given
and the shape of the wing then determined by equation (2.38). For the
obtained shapes of the wing it is not difficult to find a solution by
the usual theory, a fact which provides the possibility of evaluating
the degree of accuracy of the usual theory.

3. Computation of the Forces Acting on the Wing

The fundamental equation determining the motion of the type under
consideration is recalled:

1 1
e (x,¥,2) = 5= ff K(xJYJZJE:Tl) + x
2x :tz-\/f

35 5 (3.1)

X
'\/az—gz-qz‘Jaz-xz-yz-zz+Rcos-rdrd.x
. 2 £(g,n)aEan
v (x2 + y2 + 22 + a2 - 2ax cos v - 28y sin v)(g2 + 12 + a2 - 2af cos v ~ 2an sin t)

A
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The value of the function ¢ for the points of the half-strip i
.is computed. Since at the points of the half-strip Z

this value is a function only of y. The notation is introduced
3(y) = 1im @(x,y,z) for |y| <a, x2 +y2 >a2, x<0 (3.2)
: z+-0 ’
Then evidently
lim ¢ (x,y,z) = - &(y) for |y| < a, x2 +y2> a2, x<0 (3.3)
z+-0

The circulation over the contour M'NM (fig. 2) connecting the
two points M and M' of which point M' 1lies on the lower and point

M the upper side of the half-strip 2, both points M and M' having

the same coordinates Xx,y,0, is denoted by I'(y). It is then evident that

T(y) =2 (M) - (M) = 28(y) (3.4)

Since in the plane xy outside the circle S both the function K
and the function

q/az - x2 - yz - z2 + R

become zero, it is clear that

&(y)
2 B3 (3.5)

2
-\G -2 =
=ifff f afa? - k2 _ n24faZ - x2 - y2 £(&,n) cos y dy dx dE 4y
21 (x2 + ¥2 + a2 - 2ax cos y - 2ay sin 7v)(&2 + 12 + a2 - 25 Ecos v - 2an sin Y1)
. SRS NeZ-y2 g ! 3 _
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Computation shows that

Naz-y2

al - 2_y2dx { a,(li Siny) -l} (3.6)
: x2+yz+az—2axcosr-2ays1n‘r |a sin v - y|

Ae2-y?
where the plus sign is taken for y < a sin y and the minus sign for
y> a sin y.

The following expression is written for the distribution of the
~circulation in the vortex layer formed behind the wing:

ry) = - > - € - sen) alteiny) }cos rar agdn (3.7) -
(£2+n2+a.2-2a5cosr-2an sin y) le sin v - v|

The forces acting on the wing are computed. Denoting by P, the
pressure at a point of the wing S on the upper side of the wing and
by p_ the pressure at the same point on the lower side gives on the

basis of equation (1.8)

; _
P - Py = - 2pc =2 - (3.8)

ox

where the value of Bcp/ax is taken on the upper side of the wing.

For the 1lift force P, the following expression is obtained:

_ Np2 2
P = f(p_-p_,_)dxdy:-chff?ﬁdy:-chff a—q’d.xdy
x ox
-a

s 8 N
a
=- Zpr:f [cp(‘Vaz - ¥2,7,0) - o(-Afa2 - yz,y,o)]dy = chf #(y) dy

The following formula is obtained:

P = pc f r(y)dy - (3.9)
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having the same form as in the usual theory of a wing of finite span.
But the distribution of the circulation T'(y) by the present theory is
somewhat different from that obtained by the usual theory. The dervivae-
'tion given is not connected.w1th the shape of the wing.

With the aid of equatlon (3 6) P may be directly expressed through:
£(E,m):

3x
2

P=- E%‘E ff«/az - £2 - an(g,q)f cos v dy dg an  (3.10)
2

€2 + 12 + a2 - 2akcos v - 2an sin v

-

The expression for the induced resistance W 1in terms of the
circulaetion r(y) likewise has the same form as in the usual theory:

, W = f; \r f r(y) dr(i") 1 - dy ay’ (3.11)

dy y-v

because the origin of the induced resistance is due to the fact that
behind the wing a region of disturbed motion of the fluid is formed;
the kinetic energy of this disturbance is determined on the other hand
exclusively by the distribution of the circulation at distant points
from the wing.

The expression for the induced resistance is obtained from the
momentum law.

A surface enclosing the wing S8 is denoted by B; the momentum
law applied to the wing in a steady flow then leads to the expression

ffpcos(n,x)dd+ ff‘ PV, Vydo (3.12)
B B

where n 1is the direction of the outer normal to the surface B and

Vs Vy, V, are the components of the velocity in the relative motion
of the fluid sbout the wing. Thus ' '

Vg==-c+3°5 Vp=-c cos(n,x) + =—

ey o2 2 [0 (0 @]

X
n



76 - L ' NACA TM 1324

Substituting these_values in the preceding formula and noting that

f\rcos(n,x)dc =0; f f %:—'E do = 0
B B

results in

-8 (@) @ @eoe o[ 2E 0

The surface B consists of a hemisphere of large radius with
center at the point x = x5 < -a of the x-axis enclosing the wing, and

of the circle cut out by this hemisphere on the plane x = Xq- With

increase in the radius of the hemisphere to infinity the corresponding
parts of the integrals entering the preceding formula approach zero. On
the surface x = X,

cos(u,x) = - 15 22~ - 22

(e @ -G e

where the integration extends over the entire plane x = X5+ For
X > -« the following equation is obtained:

W=-%f'f[g ) g:) ]dy dz (3.15)

where &(y,z) denotes the velocity potential of the plane-parallel
flow which 1s established in the transverse planes far behind the wing.

therefore

The usual transformationé by Green's formule yield

a

W= -p f cza(y) e dy (3.16)

~-a

where the integral is taken over the upper side of ‘the segment (-a,a)
in the plane yz.

a4 a
ince . 36 1 ar(y')

T (y) = 28(y); S, = T (3.17)
-a -

equation (3.11) is obtained.
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In order to find the center of pressufe,_the principal moments of
the pressure forces about the Ox and Oy axes are determined.
For the moment about the Ox axis,

. o . .
. 3

My = (p_ - p.)y &x dy = - 2pc 22y ax ay = 2pc f &(y)y ay
s ox

-a

from which
a

My = pc f yl‘(v)ciy (3.18)

-a
Expressing My in terms of f(x,y) yields

M, = - % pc L/jjr‘ Vg. - E2 . 2 £(E,n)sin y cos v dy dZ dn (3 19)

52+q2+a2_2agcosy—2an sin y

For the moment about the Oy axis,

My=-ff(p_—p+)xdxdy=2pcffx%§dxdy (3.20)
s S

Substituting the value 0/dx and integrating yield

- 2ag cos v - 2a7 sin v

2
M - - 40 - cos_ y A NaZ 52 - 12 £(z,m)ag.an (3.21)
« 5 + 12 + a2

The following values are obtained for the coordinates of the center
of pressure:

x=—l—41;yc=%(- (3.22)

4. Examples

NACA comment: Errors in these examples are referred to and cor-
rected in the paper "Steady Vibrations of Wing of Circular Plan Form




78 NACA TM 1324

The equations Jjust obtained are presented again:

‘The velocity potential for z > O is determined by the equation

1 1
XY, =—ffKJJJ}
(x5¥,2) 2 {(xyzznhﬂz_ﬁx
(4.1)

a2 -~ x2 - y2 - 22 + Rafa2 - g2 - 12 cos y dy dx
ff ¥ ¥t - g £(g,m)ag an

(x2 + y2 + 22 + 22 - 2ax cos v - 2ay sin v)(E2 + 12 + a2 - 2a¥ cos v - 2an sin r)

where

Vaz_gz_nz,\/az_xz_yz_zerR
-\/ﬁar ' (4-2)

5.
K(x,y,2,%,1m) = —arc tan
nr

R=4[a? - x2 - ¥2 - 22)2 + 402225 1 =A(x - £)2 + (y - )2 + 22

For the circulation distribution in the vortex strip formed behind

the wing,
1

F(Y)='-ﬂ—3x
F2y2
Va? - £ - n2NaZ - x2 - 32 £(g,n)cos y &y dx d&dn (0.3
yzn (x2 + y2 + a2 - Zax cos v - 2ay sin v)(g2 + 12 + a2 - 2ar cos y - 2an sin 1) -3)

=- = -52'712 f(g,n)cos r Jall# sin y) - 1| ear az an
(52+112+32-2a§cos-r-2&1] sin v) ,\/[a.s:.n‘r-y[

where the plus sign is taken for y < a sin ¥ and the minus sign for
y>asiny

The following expression gives the 1ift force:

- - n2
P = pc J‘ T(y)dy = - cha ff’f' n% £(¥,n)cos v dy dgdn
52+n2+a2-2agcosy-2an sin yv

(4.4)

The usual expression for the induced resistance is

J‘ J‘ r(¥) dl"(y) L ay gy (4.5)
-y
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The coordinates of the center of pressure are determined by the
equations

My

xc= —iiy_,- yc=_ (4:.6)
P . P

where

- E2 . 2
My = oc yP(y)dy - g Qca §2 - 12 f(gn)sin y cos v dy dgdn o, 4y
-a 52+T]2+az-235cosr-29,qsin‘r

__ﬂ,_c_ 1__ cos® y dy AaZ - 2 - 12 (g,m)agdn (4.8
My ff f I 5 prlagan (a.8)

- Zag cos y - 2an sin v

If y is set equal to -a cos 6 and T (y) is represented in the
form of a trigonometric series, ’

T(y) = A7 sin 6 + Ap sin 260 + ... (0 < O < x) (4.9)

P, W and M, are directly expressed in terms of the coefficients of
this series by the formulas '

o
npca . : 1
P = > Ay W= 3 TP }E: nAnzy My = - v ﬂpcazA2 (4.10)
n=1

|.._l

Finally, the shape of the wing is determined by the equation

o) =2 [ stayax - £ x s g () (2.12)
A |
where

ey) = & x
2x® (4.12).

Vaz_yz
fff Na? - £2 - 92 £(¥,n)cos v &y ax d& dn
ANx2 + y2 - a2 (x2 + y2 + a2 - 2ax cos v - Zay sin 1} (&% + 18 + a® - 2aF cos y - Zan sin t)




80 . - - NACA TM 1324

The exa.mplés are now cbnsidered.
1. First .
£(x,¥) = ca

where a is a small constant.

Polar coordinates are used and the following integral computed:
ff Na? - g2 - 12 ag an
5 ¥2 + 12 + a2 - 2ar cos y - 2an sin y

27 S ’
" 2 _ o2
- f Va p& p d¥ dp =] —2%do. _ 2qa (4.13)
0 0

2 2 - - /\,

Substituting this value in equation (4.3) yields
31
Y3 —
T (y) = - 2aca cos y a(l ¢ siny) _ 1] dy
Tt

|a sin y - y|

la

2

If the integral is taken,

I‘(Y)=% -4a+2/v2a(a-y) +2‘\/—2_a(—a—+_; -

VZa -'\/a -y 4/23. -ﬂa +y

- (a - y) 1log (4.14)
'\/28. + ‘\/a -y '\/Za +i\la +y
Setting y = -a cos O and expanding T (-a cos 9) in a trigono-

metric sine series in the interval 0O < 6 < st give after simple
computations

(a + y) log

aca i . 6
r'(-a cos 8) = — -4+ 4cosz+4sing -
1l - cos g 1 - sin g
(1 - cos 8) log - (1 + cos 8) 1log p
1+ cos @ 1l + sin =
2 2

=Alsin6+ASSin39+Assin59+..‘. (0 6<x) (4.15)
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where
l6aca 4daca 1 1 1 :
A= — . Aoyl = - - ==t e At — ]
T 2k(k + 1)(2k + 1) 5 4k + 1
(k=1, 2, ..) : ' .(4'16)
so that
Ag = - l6aca ; Ag = - 496aca
4572 472552

The distribution of the circulation obtained is very near that of
an elliptical distribution.

The 1ift force and the induced drag are obtained by application of
equations (4.10),

P = % pcal) = % pazcza,~ 2.5465 pazcza

(4.17)
W

)

1 2 2 20202
3 mo(Ag2 + 3Az% + ...) = 1.034 paZcia

In order to determine the position of the center of pressure, My
must be computed by equation (4.8). '

Equation (4.13) gives
a (4.18)

_ Yy
3

ola

The distance from the center of pressure, which evidently lies
on the Ox axis, to the leading edge ¢6f the wing thus constitutes about
0.238 of the diameter of the wing.

In order to determine the shape of the wing corresponding to the
assumed function,it is necessary to form the function -g(y) by equa-
tion (4.12). If equation (4.13) is considered, '

-y cos v dr dx

sz-fyz az(x2-+y24-a2 Zax cos v - 2ay sin 1)

(4.19)

&ly) =
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The computation shows that for x >"Va.2 - yz '
e _ .
cos y dr - - X +

x %% + y2 + a% - 2ax cos vy - 2ay sin v 2a(x2 + y2)
2
2 . 2
Y log Xo* (v - @)% |
2a(Z + 32) 22+ (y +a)?

2 2 2 2 2 . g2
x(a2 + x +y ) XE +y a (2.20)

arc tan
a(x2'+ yZ)(XZ + yZ - aZ) 2ax

If

y=-acos 0; al - yz = a sin 6

2 (4.21)
i1 =X i -
o(6) o Sin 6g(-a cos 08)

for 0< 8 <x

sin O 4

t2+4 cos
Ho(6) = - - tog
e t2-gin2e 2(t2+cos26) 2(t2+cos29) %44 sind

sin 0 nt cos @

+

N o ©

t(t2 + 1 + cos?d) t2 - sin®0
are tan ——————— >dt

(t2 + cos0) (% - sinZ6) 2t

Computation of this integral gives

1
a arc tany

= X Pl A
Hy(6) = 5 = 2 mdy

0

sin 6 +

2 2
1l + sin g 1 1 + cos 9
+ = sin 6 {log ———2 | +

1 - sin 8 1 - cos 8

2 2

1
~ sin @| lo
5 g

e
1 - cos —

+ sin £ 10g —— 2 (¢.22)
2 e .
1 + cos E

0 1 -'sin
cos — log -
2 1l + sin

ol
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The shape of the wing is thus determined by the equatioh

1 2 arc tany
E(x,y) = ax [1 - ﬁﬁﬁ] =M{§ +;?f e i
. , 0 B '

This wing differs little from a plane wing inclined to the xy-plane
by a small angle o and may be obtained from such a plane wing by
twisting. The values of the function ((x,y) for the mean value

= 0 and for the values y = % a/2 are

1 2 arc tany 1 2
§(x,0) = ax {5 + =% ——— dy - — log?(~/Z + 1) +
2 T 'Vl _ y2 JTZ

0

2;2@ log(~/2 + 1) |~ 0.8452 ax
14

Q(x,iﬁ):a.x -l-+£2 arc tan ¥sy - log?(2 + +/3) - log23+
2 2 = l\’l - y2 212 8x2
0

log(2 + +/3) + ;{lgmg 3| ~0.8335 ax

7

It is of interest to comnsider what results for the obtained wing
are given by the usual theory. - The circulation obtained by this theory
is denoted by Fo(y); if the expansion of this circulation in a trigono-
metric series is

I'g(-a cos 6) = By sin 6 + By sin 20.+ ... (0 <8< xn) (4.24)

then the usual theory gives an equation for determining the coefficients
By, which in the case considered reduces to the form l |
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}E; By sin nf = 2nca sin 6 {a - g(-a cos ) _ 1 }i: nBp 5in n9 (4.25)
n= : '

c dca 5 sin 6

Equation (4.21) yields

}fj Bn<} + %?) sin né = 2xcaa sin 6 - Zi?c Hy(6) (4.286)
n=1

Expansion of the function H,(6) into a trigonometric series is
sufficient to determine the coefficients B,. Despite the complicated
form of the function HO(G), it can be expanded and in the interval
0S8

2
HO(6)=sin9 Ehd _4_2farctanydy +
0

o V-

zz: sin(2k + 1)6 [_ 1+ % + ... +. l__ 2(2k + 1)2 * 1 ](4.27)

e k(k + 1) 4k + 1 (4k + 1) (4k + 3)

tha-t i <3 bl . L

Hy(8) = Boxsy sin(2k + 1)6
k=0

where

Bl = - 0.1389 ; B3 = - 0.5048 j Bg = - 0.1213

By = - 0.0460 ; Bg = - 0.0212, ...

Equation (4.26) shows that

4&0&(12 - B1) dacaBoy g
By = 3 B2k =03 B2k+l = = (k =1, 2, ...)
w(x + 2) 2 + n(2k + 1)

(4.28)

The numerical values of the first coefficients will be

By = 2.4784 aca ; Bz = 0.0562 aca ; Bs = 0.0087 aca

0.0024 aca ; Bg = 0.0009 aca, ...

o
\].
il
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The following value ié obtained for the lift force:

. L .
Pp = 5 7wpcaBy = 3.8932 pclala (4.29)
exceeding the accurate value by 53 percent.

For the induéed'drag,

Wy = 2.416 palclal . (4.30)
with an error of 134 percent.
2. If a is assumed to be small, f(x,y) = - 2cax is taken.

The circulation T(y) is computed. First the value of the fol-
lowing integral is found.

. 2 _ .2 _ .2
ff gl‘/a g N~ dg dn =4 nafcos v (4.31)
5 E2 + 12 + a2 - 2ag cos v - 2an siny 3

Equation (4.3) gives

2 .
r(y) = 8ca‘a cos?y a(l * sin y)

3 B |a sin v -.yl

2

- 1t}ady

The computation of this integral leads to the very simple expression

r(y) = zoa(e? - ¥2) (4.52)

Thus in the case considered, a parabolic distribution of the circu-
lation was obtained. For this reason the computation of the forces can
be easily carried out:

a .

oo [ Gy -

-8

g
I
wlo

‘apclad = 2.667 apclad

(4.33)

W= % pclalat = 1.2732 pclatal
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Equation (4.31) is used in the computaticn of My by equation (4.8):

128 2.4 My 16

' g 2. 4 ‘
My = — pca¥a*® 1.509 pca®a ; Xp = = =L = = —Z g 4.34
APTPRS ! Tore P 9 (4.54)

_ In order to determine the shape of the wing it is necessary to
compute the function g(y); ‘equation (4.12) yields

3n
3z Val-y& ~Z 2
4aca, cos 'y dy dx
gly) = - —
S oo I Vx2 +y2 - a2 X2+y2+a2-2ax cos y- 2ay sin 1)
2
Setting

2
H1(8) = - 42’; sin 6g(-a cos 8) (0 <6 < xn) (4.35)

and carrying out the integration with respect to 7y yield

sin 8 :
Hy(6) = sin 9 t(t2+ cos?0) +

C(t2+ cos28)? At2 - sin2e

1
g (cos26 - t2) (t2+ 1+ cos26) - s t cos 8(t2+ 1+ cos?0)log

t2+ 4 cost %

+
t2+ 4 sint &
2

2(t2 + cos?0)% + (t2 - cosze)[l+ (t2 + cosze)i] are tan £2 _ gin%e at
2(t2 - sin®0) 2t

Integration yields

(l + cos 9) (1 + sin 2)
z 2/

e e 1
Hl(e) =:5-E sin 8 (1 ~ sin — - cos—>+—l_og
2 2 2 12 (l 9) ( . 9)
: - Ccos = 1l - sin =
2 2
o 1 (l + cos -g-) (l - 8in g)
sin 6 cos 9 |log tanz + 7 log (4.36)
' (l - COS 2) (1 + sin Q)
2 2

In equation (4.11), the following is taken:

g1 (y) = a(a? - y?) '
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Then for the function ¢(x,y), which determines the shape of the wing,
the following expression is obtained: '

2 2)+

t(x,y) = afa - x% - y

e (L T T L g ARG T

+ — lo

?a 1277 ({f2a - +/2 = ¥)(~/Za - 4/a ¥ 7)

L 1og'\/iﬂ - X 10'8 (+/2a_+ +/a -_.'y)(v?‘ - 4/a ¥ 7y)
_a a-y 4a (-\/'2_--\/5—-——}’)(#5+-\/E+_y)

This wing is thus obtained as a deformation of the wing:

(4.37)

t(x,y) = a(a? - x% - y2)
which for small a differs little from a segment of a sphere.

In particular, for y = O,

t(x,0) = afa? - x2) +&T¢ax [l- -\/§+% log(~/2 + l)]- a(aZ - x2 - 0.0767ax)

In order to apply the géneral theory to the obtained wing Hl(e)
is/expanded into a trigonometric series:

2
Hl(9)= “-1'57-' log tan%{,d.x sin 6 +
0
oD
~ sin(2k + 1)6
}E: sin( ) - 12mk(k + 1) +
k=1 4k(k + 1)(2k - 1)(2k + 3)

D 1 1 1 '
2(16k~ + 16k - 3 l -t ==, 4 —— )+ 2k + 1
( ) 3 5 4k+1> 6( )]

- _ =0 | T

where
' Yy = - 0.6931 ; vy

- 0.1783 ; y5 = - 0.0812

= - 0.0463 ; 1= - 0.0300, ...

-
~J
|
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For the case cons1dered, the usual theory gives for the determlnatlon
of the circulation

A

I'o(-a cos 6) = B) sin 6 + By sin 20 + ... (0< @

)

the equation

. . - -]
}f: B, sin nf = Zxca sin 8402 sin 9 - g(-a cos 9) I Z': nB sin nb

n=1 : c 4ca p-1 o sin @

(4.39)
Equation (4.35) and

cinZ0 = - 8 sin(2k + 1)6 <0< g ]
T 2;; (2x - 1)(2k + 1)(2k + 3) (050 ) (4.40)

-

give from equation (4.39) the equation

EE: (1 + 59) ZE:[:8G& = Yorsl - e 1)(2§af2;)(2k - 3)]sin(2k +1)6

(4.41)
from which without difficulty B, 1is obtained, in particular
Bon = 2 2
ox = 0 3 By = 1.8457 aca™ ; Bz = - 0.2132 aca
Be = .- 0.0250 aca® = 5 acal = 2
5 = .= O. aca® ; By = - 0.0075 aca® ; Bg = - 0.0032 aca®, ...
The following value is obtained for the lifﬁ force:
1 3
P = = wpcaB) = 2.899 ac 2830 (4.42)
exceeding the accurate value by 8.7 percent.
The induced drag
W= 1.3927 palclat (4.43)

exceeds the accurate value by 9.4 percent.
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3. In order'to give an example.of a nonsymmetrical ving,

In this case it is first necessary to compute the integral -

£(x,5) = acy

_ nye? -2 - 2 aran -4

I

On account of equation (4.3),

I{y) = -

§£
2
Aocal
sin y cos 1
3n '

X
2

After computing the integral,

ac
T(y) = =

is obtained.

Assuming ¥y
give

I'(-a cos 9)

1

6

+ 12 + a2 - 2ag cos v - 2an sin ¢y O

a(l* sin v)

la sin v - y]

ﬁa +y)+/2a(a - y) - (a - y)+/2a(a + y5l+

ol

(o + y)(a - 3y) log Y22 V/B - ¥
NN

L (a - y)(a + 3y) log Ao e yJ

~/2a + {/fa + ¥y

89

nafsin v (4.44)

(4.45) -

= -a cos. @ and expanding in a trigonometric series

CLC&Z

(L -~ cos 8)(1 + 3 cos 8) log

(1 + cos 6)(1 - 3 cos B) log

sin 260 + Ay sin 40 + ...

2(1 - cos 8)cos g - 2(1 + cos. 98)sin g +

1l - cos —

1 + cos

© Moo

1l - s8in ~

[s5] [xV]

1+ sin —
2

(0€6<x)

(4.48)
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where
2
Ap = 128 aca
27n2
. . (4.47)
Agk = sace?] 81’ + 1 <} T — ) ; 2k '
% |__6k(k2 - 1)(4x2 - 1) 5 4k - 1/ (k2 - 1)(4k? - 1)
(x = 2,3, ...)
s0 that

Ap = - 0.4803 aca® ; A, = 0.00549 aca?

A, = 0.00234 aca® ; A, = 0.00123 aca?

6 8

Evidently there is no 1ift force, whereas for the induced drag
the following value is obtained:

W = 0.1813 pafclat (4.48)

The moment of the forces about the Ox axis is:

M'.X = - % ‘J‘tpcazAz = 0.3772 pcx.cza4 (4:'4’9)

The moment of the forces about the Oy axis is computed with the
aid of equation (4.8), where use must be made of the result (4.44),
and it is found that

M, = 0 "~ (4.50)
The following function is now computed:
3n
3 al-y? z
gly) = 2a~ac sin v cos y dy dx

= > .

St 1t Vx2+y2-a2(x2+y2+a2-2ax cos 1 -2ay sin v)

2

Setting
2
3n
Ho(0) =
2( ) 2aa.c

sin 6g(-a cos 8) (0< 9 &€ x) (4.51)
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and carrying out the integration with respect to T give

sin @
Hp(6) =

(t2 + cos28)2 At2 - sinZ@

% t cos 6(t2 + 1 + cos20) +

o ,
sin t‘ cos 8(t2 + cos?@) +

k=1

1 ' _ . t2 + 4 cos4g
= (t2 + 1 + cos26)(cos20 -~ t2) log -
4 ]
. 42 + 4 sin% =
: 2
tcos 6[1 + (2 ¥ cos29)2 2 _ sin®e|
cos [1 ( cos®9) ]arc tan sin®o dt
t2 - gin20 2t
(4.52)
= sin 6 cos O %logz(-\/f+l)+3fwdy_é.“_ +
o Vi-v¥ *
A . g\&
1l + cos — 1 + s8in —
sin 8(1 - 3 cos 8) log 2 ) _ sin 8(1+3 cos 9) Tog 2
16 1l - cosg 16 1 - sin-g
2 2
1+3cos @ . ¢ 1+¢CoS5 1 _3cos 6 ] 1+ sin >
—————— sin E log o~ cos -2- log ————5
a 1l - cos 5 2 . 1l - sin 5
Expansion in a trigonometric series gives
2
3 2 3 arc tany 9x 2159
H(G):sinze[—log(-\/é'+l)+— ——— dy - = + —— | -
2
. 4 - 2 s '\,l _ yg 16 630
o0
2. 2
2(8k~ + 1 1 1 12k
( ) (l+§+-"‘+4k-l' 2 )sinZke
k=2 (4k2 - 1)(4k2 - 4) 8k® + 1
(- -] . .
= EE: 8oy sin 2k6 (4.53)
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where
8, = - 0,27412 ; &, = - 0.08127 ; 85 = - 0.05198 ; g = - 0.03641, ...

The usual theory for determining the circulation

I'(-a cos 6) = z B, sin né
n=1
gives the equation

(.4

' -a cos 6
}Z: Bn(l + %?bsin nd = 2xca sin 6 {-aa cos 6 - Ei——j;————l
n=1

24 sin 20 4aca” () (4.54)
=~ xca~a sin - Tan Hz .

from which without difficulty

B2k+l =0 (k = 0,1,2, ...)
By =~ 0.7304 acal ; B, =0.0047 aca ; By =0.0021 aca? ; Bg =0.0011 aca?,...

The 1ift force 1s found equal to zero and the induced drag and
moment of the forces sbout the Ox axis are

W= 0.4191 pofcPat ; M = 0.5737 pafcat (2.55)

The first gives an error of 131 percent, the second of 52 percent.

By a combination of the obtained solutions it would have been
possible to obtain further examples. From the examples given it is
clear that for the case of a circular wing considerable deviations are
obtained between the usual and the exact theories.

Translated by S. Reiss
National Advisory Committee
for Aeronautics
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